欢迎登录材料期刊网

材料期刊网

高级检索

为了研究(001)应变对正交相Ca2P0.25Si0.75能带结构及光学性质的影响,采用第一性原理贋势平面波方法对(001)应变下正交相Ca2P0.25Si0.75的能带结构及光学性质进行了模拟计算.计算结果表明:晶格(001)面发生100%~116%张应变时,带隙随着应变增加而减小;在晶格发生88%~100%压应变时,带隙随着张应变的增加而增加;84%~88%压应变时,带隙随着压应变的增加而减小.当施加应变后光学性质发生显著的变化:随着压应变的增加,静态介电常数、折射率逐渐减小,张应变则增大.施加压应变反射向高能方向偏移,施加张应变反射向低能方向偏移,但施加应变对反射区域的影响不显著.施压应变吸收谱、光电导率的变化与介电函数和折射率相反.综上所述,(001)应变改变了Ca2P0.25Si0.75的电子结构和光学常数,是调节Ca2P0.25Si0.75光电传输性能的有效手段.

To study the effect of (001) strain on energy band structure and optical properties of the simple orthorhombic Ca2P0.25Si0.75. The energy band structure and optical properties of the simple orthorhombic Ca2P0.25Si0.75 bulk under the (001) strain have been calculated by the first?principle pseudo?potential method based on density functional theory (DFT). The results show that the simple orthorhombic Ca2P0.25Si0.75 bulk is a direct semiconductor and the band gap value decreased with the tensile strain increased in range of 100%~116% and the compressive strain increased in range of 84%~88%, but it is increased with the compressive strain increased in range of 88%~100%. The optical properties have a significantly change by straining. The dielectric constant and the refractive index of the simple orthorhombic Ca2P0.25Si0.75 bulk are decreased when compressive strained increased, but they are increased as tensile strained increased. The reflectivity of the simple orthorhombic Ca2P0.25Si0.75 bulk moved to the high energy direction with the compressive strain increased, and it moved to the direction of low energy with the tensile strain increased. The absorption and the conductivity of the simple orthorhombic Ca2P0.25 Si0.75 bulk are increased with compressive strained increased. The transmission property of the energy band structure and optical properties of the simple orthorhombic Ca2P0.25Si0.75 bulk are changed by straining on the (001) surface. It is a useful method for modulating the photoelectric transmission property of the simple orthorhombic Ca2P0.25Si0.75 bulk.

参考文献

[1] LEBèGUE S;ARNAUD B;ALOUANI M .Calculated quasiparticle and optical properties of orthorhombic and Ca2Si[J].Physical Review B,2005,72(8):1-8.
[2] Yoji Imai;Akio Watanabe .Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method[J].Intermetallics,2002(4):333-341.
[3] Matsui H.;Kuramoto M.;Ono T.;Nose Y.;Tatsuoka H.;Kuwabara H. .Growth of Ca2Si layers on Mg2Si/Si(111) substrates[J].Journal of Crystal Growth,2002(Pt.3):2121-2124.
[4] CHENG J;YANG Y Y;LIANG Y.Selective growth of Ca2 Si film in Ca-Si system by R.F MS by annealing[A].,2012:75-79.
[5] IMAI Y;WATANABE A;MUKAIDA M .Electronic structures of semiconducting alkaline-earth metal sili-cides[J].Journal of Alloys and Compounds,2003,358(1-2):257-263.
[6] Migas DB.;Miglio L.;Shaposhnikov VL.;Borisenko VE. .Comparative study of structural, electronic and optical properties of Ca2Si, Ca2Ge, Ca2Sn, and Ca2Pb - art. no. 205203[J].Physical review, B. Condensed matter and materials physics,2003(20):5203-0.
[7] Takagi N;Sato Y;Matsuyama T;Tatsuoka H;Tanaka M;Fengmin C;Kuwabara H .Growth and structural properties of Mg2Si and Ca2Si bulk crystals[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(1/4):330-333.
[8] BUSCH C;JUNOD P;KATZ U et al.Electrical con-ductivity of the intermetallic compounds Ca2 Si,Ca2 Sn,Ca2 Pb,ZnSb[J].Helvetica Physica Acta,1954,27(33):193-197.
[9] Yang, YY;Xie, Q .A single phase semiconducting Ca-silicide film growth by sputtering conditions, annealing temperature and annealing time[J].Journal of Materials Science,2009(14):3877-3882.
[10] YANG Y Y;XIE Q .Selective growth of Ca2Si film by annealing from the different thickness of Ca films by sputtering[J].材料科学与工程学报,2009,5(27):675-678.
[11] 马建立,张鹤鸣,宋建军,王冠宇,王晓艳.(001)面任意方向单轴应变硅材料能带结构[J].物理学报,2011(02):552-557.
[12] 王冠宇,马建立,张鹤鸣,王晓艳,王斌.[110]/(001)单轴应变Si本征载流子浓度模型[J].物理学报,2011(07):567-572.
[13] 郭伟国,左红星,孟卫华,曾志银,邵小军.第三种应变时效与机械波谱关联性探讨[J].材料科学与工艺,2012(01):128-134.
[14] 崔冬萌,贾锐,谢泉,赵珂杰.Ru2Si3在应力作用下的第一性原理研究[J].发光学报,2011(09):907-912.
[15] WANG L W;YU Y W;WEI Z J .Microstructure of the Hypoeutectic Al-Mg Alloy Solidified at 4Gpa high pressure[J].Journal of Harbin Instintute Technology(New Series),2013,20(5):101-105.
[16] 胡智向,吴玉喜,顾书林,李腾,渠立成.外压调制下ZnO晶体结构与光学性质变化特性的研究[J].量子电子学报,2010(05):613-619.
[17] 宫莹,宗影影,侯智敏,毛小南,单德彬.热变形参数对TC21钛合金微观组织的影响[J].材料科学与工艺,2013(05):113-116.
[18] 闫万珺;张春红;桂放 等.应力作用下β-FeSi2的电子结构及光学性质[J].光学学报,2013,33(7):0716001-0716008.
[19] Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%