欢迎登录材料期刊网

材料期刊网

高级检索

为了改善MEMS超级电容器膜电极的致密性,通过在聚吡咯( PPy)中引入苯磺酸钠( BSNa)和氧化石墨烯( GO)表面改性功能薄膜,实现聚吡咯薄膜在MEMS超级电容器三维微结构上的均匀沉积.借助扫描电镜( SEM)、循环伏安测试( CV)、交流阻抗谱测试( EIS)、恒流充放电测试( CP )等手段对表面改性后的样品进行电化学性能测试.结果表明:当吡咯单体(Py)与BSNa摩尔比为1∶2,GO含量为0.4%时,在-0.4~1.0 V电压范围内,以100 mV/s速率扫描56圈,PPy薄膜的致密性最佳;表面改性可以在很大程度上减轻PPy颗粒的团聚,使得聚合后的PPy分子链排布紧密,形成了规整的网状立体结构;在放电电流为2 mA时,比容量可以达到13.3 mF/cm2,MEMS超级电容器的电化学性能得到改善.

In order to improve the compactness of film electrode for the MEMS supercapacitor, modified PPy film is deposited uniformly on the three?dimensional MEMS surpercapacitors structure by adding quantitative benzenesulfonate ( BSNa) and graphene oxide ( GO) into the electrolyte. The electrochemical performances of the modified samples are tested and analyzed by scanning electron microscopy ( SEM ) , cyclic voltammetry ( CV) , electrochemical impedance spectroscopy( EIS) and constant current charge?discharge test ( CP ) . The results show that the uniform and dense modified PPy film can be fabricated by the cyclic voltammetry in the voltage range of -0.4 ~ 1.0 V, with the scan rate of 100 mV /s and the scan lap of 56, when the ratio of Py to BSNa is 0. 5 and the content of GO is 0. 4wt%. It is observed by SEM that modification can reduce the agglomeration of PPy particles largely, so that PPy molecular chain arranged closely after polymerization to form a regular three?dimensional mesh structure. The capacitance of the samples is up to 13. 3 mF/cm2 at a discharge current of 2 mA by the constant current charge?discharge test and the electrochemical properties of MEMS surpercapacitors is obviously improved.

参考文献

[1] Sahoo, S.;Dhibar, S.;Hatui, G.;Bhattacharya, P.;Das, C.K. .Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor[J].Polymer: The International Journal for the Science and Technology of Polymers,2013(3):1033-1042.
[2] 霍晓涛,朱平,韩高义,熊继军.MEMS超级电容器用聚吡咯/炭材料复合膜电极的制备及其性能[J].新型炭材料,2013(06):414-420.
[3] 朱平,霍晓涛,韩高义,熊继军.基于聚吡咯/氧化石墨烯电极的ME MS微电容的性能研究[J].功能材料,2013(19):2768-2772.
[4] 薛荣,阎景旺,田颖,衣宝廉.镧掺杂的二氧化锰/碳纳米管电化学超级电容器复合电极[J].物理化学学报,2011(10):2340-2346.
[5] Young Dae Kim;Gi Gwang Hong .Electrorheological properties of polypyrrole-silica nanocomposite suspensions[J].The Korean journal of chemical engineering,2012(7):964-968.
[6] Fulya Memioglu;Ayse Bayrakceken;Tuba OEznuelueer;Metin Ak .Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications[J].International journal of hydrogen energy,2012(21):16673-16679.
[7] FENG X;LI R;YAN Z et al.Reparation of gra-phene/polypyrrole composite film via electrodeposition for supercapacitors[J].NANOTECHNOLOGY,2012,11(6):1080-1086.
[8] 王春晓,任鹏刚,刘蓬,谢利,张华,方长青.聚吡咯/石墨烯复合导电材料的制备及性能表征[J].功能材料,2012(16):2150-2152,2155.
[9] 曹庆超,黄安平,张维,郑晓虎,肖志松,王小威,季君晖.碳基材料掺杂聚合物导电特性研究进展[J].高分子材料科学与工程,2012(04):177-181.
[10] Cheol Kim;Shuai Zhang .Conductivity of carbon nanofiber/polypyrrole conducting nanocomposites[J].Journal of Mechanical Science and Technology,2009(1):75-80.
[11] Guangqing Xu;Samuel B. Adeloju;Yucheng Wu.Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor[J].Analytica chimica acta,2012:100-107.
[12] 刘建华,马玉骁,于美,安军伟,李松梅.石墨烯-聚吡咯纳米管杂化材料的制备及电容特性[J].无机化学学报,2013(05):929-935.
[13] Majid Beidaghi;Chunlei Wang .Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes[J].Electrochimica Acta,2011(25):9508-9514.
[14] JIN Y;CHEN H Y .Carbon nanotube/polyaniline/grapheme composite paper and its electrochemical capacitance behaviors[J].ACTA PHYSICO-CHIMICA SINICA,2012,28:609-614.
[15] ZHU P;CAI T .Selection and preparation of the membrane electrode material for micro-supercapacitor[J].Sensors & Actuators:B.Chemical,2015,213:202-208.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%