欢迎登录材料期刊网

材料期刊网

高级检索

为了更准确地描述钛合金的高温变形行为,对Arrhennius方程进行修正得到钛合金高温本构方程.通过对一种新型钛合金在热模拟试验机上进行恒应变速率等温压缩实验,研究其在700~1000℃、应变速率0.01~10 s-1条件下的热变形行为,分析了材料的真实应力-真实应变曲线.采用最小二乘拟合的数据回归处理,得到该钛合金在α+β双相区和β单相区的热变形激活能,并通过引入温度变量,获得了Arrhennius方程参数A随温度变化的函数关系,建立了该材料的高温流变应力本构方程.实验结果表明,随着变形增加,流变应力开始急剧增加,随后出现软化并趋于稳态,同时峰值应力对于温度和应变速率具有很强的敏感性.通过在Arrhenius方程中引入温度变量,有利于提高本构方程的准确性.

Arrhennius equation was modified to obtain a more accurate description of the hot deformation behavior of Titanium alloy. Based on the results that the constant strain rate and isothermal compression experiment for a new type of titanium alloy was performed on thermal simulation testing machine, hot deformation behavior was studied at temperatures of 700~1 000 ℃and strain rates of 0. 01~10 s-1 . Using the least square fitting method, the activation energy in α+β and β phase areas was calculated. The constitutive equation of flow stress was obtained by introducing function of parameter A of the Arrhennius equation and temperature .The analysis of the true stress?true strain curves shows that the flow stress sharply increased firstly, then decreased to a steady state. The peak stress is both sensitive to temperature and strain rate. The experiments show that the modified Arrhenius equation improves the accuracy.

参考文献

[1] 高玉社,李少强,张钢,朱晓刚,张晓园,杜予咺.热处理工艺对Ti55531钛合金组织及性能的影响[J].西安工业大学学报,2011(04):365-369.
[2] 李金华 .TC21钛合金热加工过程的微观组织演化及演化模拟研究[D].南京:南京航空航天大学,2007.
[3] 廖建宇,胡萌,徐东,鲁世强.基于数理统计方法的TB6钛合金本构关系[J].热加工工艺,2011(12):5-7,12.
[4] 赵为纲,李鑫,鲁世强,刘志和,王克鲁,李臻熙,曹春晓.TC11钛合金高温变形本构关系研究[J].塑性工程学报,2008(03):123-127.
[5] 鲍俊瑶;徐超 .TC11钛合金高温塑性本构方程研究[J].安徽建筑工业学院学报:自然科学版,1999,7(4):43-47.
[6] 孙志超,杨合,沈昌武.基于逐步回归法的TA15钛合金本构模型的建立[J].锻压技术,2008(02):110-115.
[7] Warchomicka, F.;Poletti, C.;Stockinger, M. .Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(28):8277-8285.
[8] MATSUMOTO H;KITAMURA M;LI Y et al.Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastableβmicrostructure[J].Materials Science and Engineering A,2014,611:337-344.
[9] DIKOVITS M;POLETTI C;WARCHOMICKA F .Deformation mechanisms in the near-β titanium alloy[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2014,45(3):1586-1596.
[10] 易幼平,杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力本构方程[J].材料工程,2007(04):20-22,26.
[11] H.Z. Zhao;L. Xiao;P. Ge;J. Sun;Z.P. Xi.Hot deformation behavior and processing maps of Ti-1300 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:111-116.
[12] Li, C.;Zhang, X.-Y.;Li, Z.-Y.;Zhou, K.-C..Hot Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Near Β Titanium Alloys Containing Thin and Thick Lamellar α Phase[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:75-83.
[13] MATSUMOTO H;KITAMURA M;LI Yunping et al.Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014,611:337-344.
[14] Liu S.F.;Li M.Q.;Luo J.;Yang Z..Deformation behavior in the isothermal compression of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:15-22.
[15] Fan, J.K.;Kou, H.C.;Lai, M.J.;Tang, B.;Chang, H.;Li, J.S..Hot deformation mechanism and microstructure evolution of a new near β titanium alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:121-132.
[16] D. He;J.C. Zhu;Z.H. Lai;Y. Liu;X.W. Yang .An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti-6Al-2Zr-1Mo-1V alloy[J].Materials & design,2013(Apr.):38-48.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%