基于编制的机场环境加速试验谱,针对关键结构高强度铝合金件进行当量腐蚀试验,在实验室条件下成功地模拟和再现了服役环境条件的腐蚀损伤,借助复型法观测得到了腐蚀损伤的演化规律;通过预腐蚀疲劳试验和疲劳断口扫描电镜定量分析,得到了裂纹长度a与循环次数N数据集,分析了裂纹扩展速率da/dN与应力强度因子幅值ΔK的对应关系,定量表征了不同程度腐蚀损伤对疲劳裂纹扩展行为的影响规律。结果表明,在腐蚀初期,疲劳裂纹扩展过程中有经典的小裂纹扩展阶段;随着腐蚀损伤的加重,小裂纹行为不明显;腐蚀损伤越严重,疲劳裂纹扩展速率越快,结构抗疲劳性能显著退化。
Based on an accelerated corrosion testing spectrum complicated for the servicing field environment, the equivalently accelerated corrosion testing of high strength aluminum alloy 7B04-T6 specimens for critical structure were carried out. Corrosion damage under the field environment was successfully simulated and reappeared, and corrosion damage evolvement rule was obtained. By prior?corrosion fatigue testing and fractography quantitative analysis, the fatigue crack length (a) and fatigue cycles (N) were gotten, and relationship between fatigue crack growth rate (da/dN) and stress intensify factors rang (ΔK) was analyzed. Moreover the effect of different corrosion damage on fatigue crack growth behavior was quantitatively characterized. The result shows that there is obvious short crack growth behavior during early corrosion stage, the fatigue crack growth rate increases when the corrosion damage is more serious, and the fatigue performance is greatly degraded.
参考文献
[1] | 谭晓明,陈跃良,金平.基于模糊可靠性的飞机结构腐蚀疲劳寿命评定[J].中国航空学报(英文版),2005(04):346-351. |
[2] | 谭晓明,陈跃良,段成美.飞机结构搭接件腐蚀三维裂纹扩展特性分析[J].航空学报,2005(01):66-69. |
[3] | M.K. Cavanaugh;R.G. Buchheit;N. Birbilis .Evaluation of a simple microstructural-electrochemical model for corrosion damage accumulation in microstructurally complex aluminum alloys[J].Engineering Fracture Mechanics,2009(5):641-650. |
[4] | 张丹峰,谭晓明,马力,陈跃良.服役环境条件下飞机结构铝合金材料孔蚀规律研究[J].中国腐蚀与防护学报,2010(01):93-96. |
[5] | Kimberli Jones;David W. Hoeppner .The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy[J].International Journal of Fatigue,2009(4):686-692. |
[6] | Kimberli Jones;Sachin R. Shinde;Paul N. Clark;David W. Hoeppner .Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2008(9):2588-2595. |
[7] | Kimberli Jones;David W. Hoeppner .Prior corrosion and fatigue of 2024-T3 aluminum alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(10):3109-3122. |
[8] | KIMBERLI J;DAVID W H .Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading[J].Corrosion Science,2005,47:2185-2198. |
[9] | K. van der Walde;B. M. Hillberry .Characterization of pitting damage and prediction of remaining fatigue life[J].International Journal of Fatigue,2008(1):106-118. |
[10] | K. van der Walde;B.M. Hillberry .Initiation and shape development of corrosion-nucleated fatigue cracking[J].International Journal of Fatigue,2007(7):1269-1281. |
[11] | K. M. Gruenberg;B. A. Craig;B. M. Hillberry .Predicting fatigue life of pre-corroded 2024-T3 aluminum[J].International Journal of Fatigue,2004(6):629-640. |
[12] | TAN Xiaoming;CHEN Yueliang;JIN Ping.Prediction approach for corrosion fatigue life of aircraft structure based on probabilistic fracture mechanics[A].Harbin:Key Engineering Materials,2006:324-325,943-946. |
[13] | 刘文珽;李玉海.飞机结构日历寿命体系评定技术[M].北京:航空工业出版社,2004:121-130. |
[14] | Yibin Xue .Modeling fatigue small-crack growth with confidence - A multistage approach[J].International Journal of Fatigue,2010(7):1210-1219. |
[15] | A. Shyam;J. E. Allison;J. W. Jones .A small fatigue crack growth relationship and its application to cast aluminum[J].Acta materialia,2005(5):1499-1509. |
[16] | CAPPELLI M D .The evolution of multi-site small cracks under fatigue loading[D].Georgia Institute of Technology,2007. |
[17] | M. D. Cappelli;R. L. Carlson;G. A. Kardomateas .The transition between small and long fatigue crack behavior and its relation to microstructure[J].International Journal of Fatigue,2008(8):1473-1478. |
[18] | 谭晓明,张丹峰,陈跃良.基于微观结构的2B06铝合金全寿命概率模拟[J].航空学报,2012(08):1434-1439. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%