利用元胞自动机和有限差分( CA-FD)法,采用宏-微观两种尺度,将宏观温度场与微观枝晶生长过程耦合在一起,再现了Fe-0.06%C二元合金焊接熔池的凝固过程.同时,探讨了边界散热速率对焊接熔池中枝晶生长形貌及晶粒尺寸的影响;分析了形核基底数与枝晶生长间的关系;并用实验对模拟结果进行了验证.结果表明,在熔池凝固过程中,温度梯度沿散热边界向绝热边界方向不断减小,等温线弧度不断增大;熔池散热边界附近的液相中溶质浓度远远高于绝热边附近和模拟区域中心的液相溶质浓度;模拟区域内的温度梯度随着边界散热速率的增大而升高.此外,随着形核基底的增加,柱状晶数量基本不变;而等轴晶数量不断增多,分布范围逐渐扩大,但尺寸有所减小.模拟结果反映了焊接熔池的凝固过程,并与实验结果吻合,为实际焊接工艺的选取提供了一定的参考.
The simulation model of macroscopic temperature field and dendritic growth, in which cellular automata?finite difference( CA-FD) methods and two kinds of scales are adopted, are combined to simulate the solidification process of Fe-0.6%C alloy in welding pool. According to the model, the influence of dendrite morphology and grain size with different boundary cooling rate and different nucleation basal are analyzed and discussed. To verify the simulation results, welding experiments are carried out. It is found that in the solidification process the temperature gradient decreases while isotherm curvature increases from the cooling side to the adiabatic side. Meanwhile, the solute concentration near the cooling side is much higher than that near the insulation boundary and in the center of the welding pool. Furthermore, the region of temperature gradient rises with the increase of cooling rate. As the nucleation substrate increases, the number of columnar crystals remains the same, while the amount of equiaxed crystals raise faster. The simulation results demonstrate the solidification process of welding pool and agree well with the experimental results.
参考文献
[1] | PAVLYK V,DILTHEY U. Simulation of weld solidifi-cation microstructure and its coupling to the macro-scopic heat and fluid flow modelling [J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1):33-45.,2004. |
[2] | YIN H, FELICELLI S D, WANG L . Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods[J].Acta Materialia,2011,59(8):3124-3136.,2011. |
[3] | REN Peng,ZHANG Wei,GUO Zi-tao,WEI Gang.Numerical simulation for deformation of multi-layer steel plates under underwater impulsive loading[J].哈尔滨工业大学学报(英文版),2012(03):68-72. |
[4] | YIN H, FELICELLI S D . Dendrite growth simulation during solidification in the LENS process[J].Acta Materialia,2010,58(4):1455-1465.,2010. |
[5] | 袁训锋,丁雨田.相场法模拟强各向异性作用下二元合金枝晶生长[J].中国有色金属学报,2011(09):2216-2222. |
[6] | 江鸿翔,赵九洲.枝晶生长的三维元胞自动机模拟[J].金属学报,2011(09):1099-1104. |
[7] | 吕宝佳,康进武,黄天佑.基于cv-FDM法的铸件凝固过程热应力数值模拟[J].材料科学与工艺,2010(06):862-867. |
[8] | LI Daming,LI Ruo, ZHANG Pingwen . A cellular au-tomaton technique for modelling of a binary dendritic growth with convection[J].Applied Mathematical Modelling,2007,31(6):971-982.,2007. |
[9] | STEPHEN W. Computation theory of cellular automata [J] Communications in Mathematical Physics, 1984, 96(1):15-57.,1984. |
[10] | GANDIN C A, RAPPAZ M. A coupled finite element-celluar automaton model for the prediction of dendritic grain structures in solidification process [J]. Acta Metallurgica et Materialia, 1994, 42(7):2233-2246.,1994. |
[11] | WANG W,LEE P D. A model of solidification micro-structures in nickel-based super-alloys:predicting pri-mary dendrite spacing selection [J]. Acta Materialia, 2003, 51(5):2971-2987.,2003. |
[12] | 许林,郭洪民,杨湘杰.元胞自动机法模拟铝合金三维枝晶生长[J].铸造,2005(06):575-578. |
[13] | 朱鸣芳,陈晋,孙国雄,洪俊杓.枝晶生长的数值模拟[J].金属学报,2005(06):583-587. |
[14] | HAKAN H, MATTI R. Microstructure evolution influenced by dislocation density gradients modeled in a reaction-diffusion system [J]. Computational Materials Science, 2013, 67:373-383.,2013. |
[15] | 马瑞,董志波,魏艳红,占小红.镍基合金焊缝凝固组织演变过程模拟和仿真[J].焊接学报,2010(07):43-46. |
[16] | BECKERMANN C,DIEPERS H J, STEINBACH I, et al. Modeling melt convection in phase-field simulations of solidification[J]. Journal of Computational Physics, 1999(2), 154:468-496.,1999. |
[17] | 陈晋 .基于胞元自动机方法的凝固过程微观组织数值模拟[D].东南大学,2005. |
[18] | LUO Sen, ZHU Miao.A two-dimensional model for the quantitative simulation of the dendritic growth with cel-lular automaton method [J]. Computational Materials Science, 2013, 71:10-18.,2013. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%