中国表面工程, 2017, 30(3): 104-114. doi: 10.11933/j.issn.1007-9289.20170116001
HfB2-WB2-Si/SiC-SiCNW复合涂层的制备及其抗氧化性能
孟剑 1, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"泡沫填充圆筒是一种新型碰撞吸能结构,具有较好的吸能特性,现已广泛应用于汽车安全设计、航天器回收等领域.本文提出了一种以聚氨酯泡沫(PU)作为芯材,外侧缠绕玻璃纤维布并通过树脂室温固化形成的新型玻璃纤维增强复合材料(GFRP)筒体结构.通过这种泡沫填充GFRP圆筒的轴心受压试验,研究了泡沫密度、外壁厚度以及筒体高度对泡沫填充GFRP圆筒的力学性能与吸能能力的影响.","authors":[{"authorName":"范学明","id":"b497a2eb-7404-41b3-a4b4-41053a0c0bd4","originalAuthorName":"范学明"},{"authorName":"王璐","id":"9b936a75-f511-4adf-9ef7-b346cb4a7357","originalAuthorName":"王璐"},{"authorName":"刘伟庆","id":"f76dc246-55c6-4a50-94c1-bb37c0876b89","originalAuthorName":"刘伟庆"},{"authorName":"陈浩","id":"e3b17674-76cb-448f-8b6a-e4074c64352a","originalAuthorName":"陈浩"},{"authorName":"吴志敏","id":"c7be14fc-6fb8-41f7-a3fb-24e4ed7950e4","originalAuthorName":"吴志敏"},{"authorName":"霍瑞丽","id":"8324c116-0186-4e30-ad92-efa404900018","originalAuthorName":"霍瑞丽"}],"doi":"","fpage":"36","id":"bbabab3a-af43-4045-a801-a0ce13c64bb0","issue":"12","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"c2379cee-77b1-468f-8f6f-64d31bc2c0d4","keyword":"GFRP圆筒","originalKeyword":"GFRP圆筒"},{"id":"448d98c6-917c-408b-bc22-0cc4c279bebe","keyword":"聚氨酯泡沫","originalKeyword":"聚氨酯泡沫"},{"id":"31eb2fe1-bcef-4991-8b5d-88cb540c2596","keyword":"轴向压缩","originalKeyword":"轴向压缩"},{"id":"c243d6b9-b959-4dd1-81c1-e031016bbb8f","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"1f8ac097-c68f-4be4-9dd0-5171302c44b5","keyword":"吸能特性","originalKeyword":"吸能特性"}],"language":"zh","publisherId":"blgfhcl201412006","title":"泡沫填充GFRP复合材料圆筒的轴向压缩吸能特性","volume":"","year":"2014"},{"abstractinfo":"采用中性盐雾加速老化试验模拟海洋大气环境,对玻璃纤维/不饱和聚酯复合材料在盐雾环境中的弯曲性能进行了研究。通过玻璃纤维/不饱和聚酯复合材料经盐雾加速老化后的吸湿率、玻璃化转变温度、巴氏硬度和弯曲性能的变化,结合金相显微镜观测得到的腐蚀深度,研究腐蚀深度对玻璃纤维/不饱和聚酯复合材料耐久性的影响。结果表明:老化初期玻璃纤维/不饱和聚酯复合材料的吸湿率随时间增长较快,随后增长逐渐趋于稳定。玻璃纤维/不饱和聚酯复合材料的玻璃化转变温度呈现先增加后下降的趋势,老化180 d 后玻璃化转变温度增加了2.1%;老化180 d后玻璃纤维/不饱和聚酯复合材料的巴氏硬度与老化前相比降低了17.6%,弯曲强度损失率为10%。基于金相显微镜分析得到老化后玻璃纤维/不饱和聚酯复合材料的腐蚀深度,建立了腐蚀深度与弯曲强度之间的关系。","authors":[{"authorName":"方园","id":"302a9cd9-abd6-49a3-a532-17c0b31b5dd8","originalAuthorName":"方园"},{"authorName":"梁亚杰","id":"8f801ee4-c7ad-4703-a8a9-9363db2d3029","originalAuthorName":"梁亚杰"},{"authorName":"刘伟庆","id":"8b1f50e2-c366-4d1d-ad86-f332f0228d4a","originalAuthorName":"刘伟庆"},{"authorName":"黄杨","id":"888bb21e-a090-4cb1-9d4f-eb7ed67d77e7","originalAuthorName":"黄杨"},{"authorName":"霍瑞丽","id":"1aeacdd9-5b49-4b7a-8955-ee44729df4d8","originalAuthorName":"霍瑞丽"}],"doi":"10.13801/j.cnki.fhclxb.20160107.002","fpage":"1223","id":"5280b3ad-7aa4-43f9-bc8e-dc69c0f9bd79","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"19a307b1-1cbd-430c-b96c-45021bd74e4f","keyword":"玻璃纤维","originalKeyword":"玻璃纤维"},{"id":"9f02e682-c0a1-414e-afb2-b08cc8cfad44","keyword":"不饱和聚酯","originalKeyword":"不饱和聚酯"},{"id":"aa292822-63d0-4e18-9b27-010da8d21887","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"e94e2bfa-f1e5-4d52-9a52-ac3514b7bcf8","keyword":"盐雾","originalKeyword":"盐雾"},{"id":"1cd9a498-d8d0-4cb2-a917-3c95f55b55d4","keyword":"弯曲性能","originalKeyword":"弯曲性能"},{"id":"6cc897a6-d625-40ba-b438-a83f94d19993","keyword":"腐蚀深度","originalKeyword":"腐蚀深度"}],"language":"zh","publisherId":"fhclxb201606012","title":"盐雾环境中玻璃纤维/不饱和聚酯复合材料腐蚀深度对弯曲性能的影响","volume":"33","year":"2016"},{"abstractinfo":"采用人工加速老化的方法模拟湿热环境,通过泡桐木玻璃纤维增强复合材料夹芯结构的双悬臂梁拉伸剥离试验,研究湿热环境对玻璃纤维增强复合材料(GFRP)面板和泡桐木芯材的粘结性能的影响.试验结果表明,90d湿热加速老化后泡桐木复合材料夹芯结构的能量释放率下降了32.3%,芯材泡桐木顺纹抗拉强度下降了11.6%,GFRP面板拉伸模量下降了11.0%.","authors":[{"authorName":"赵鹏飞","id":"d50d267b-7fd3-4bcb-a337-882589723efd","originalAuthorName":"赵鹏飞"},{"authorName":"方园","id":"a318352e-3ed5-4392-b501-09a39bd0231d","originalAuthorName":"方园"},{"authorName":"刘伟庆","id":"1b13f49f-15f4-4612-8599-3226ec9f24bf","originalAuthorName":"刘伟庆"},{"authorName":"徐丹洋","id":"037cc67b-93b8-4693-88fc-4b4900271286","originalAuthorName":"徐丹洋"},{"authorName":"霍瑞丽","id":"5096309a-c3dd-4d56-a429-21c6be289aa4","originalAuthorName":"霍瑞丽"}],"doi":"","fpage":"49","id":"66e0fe7a-02db-4261-b4bd-acfeb96f94a7","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"d0d4a9d2-5f6d-4214-8b81-0fc8824b24d2","keyword":"玻璃纤维增强复合材料","originalKeyword":"玻璃纤维增强复合材料"},{"id":"33d23f6d-de17-45fa-96b5-f2bbbee436d9","keyword":"泡桐木","originalKeyword":"泡桐木"},{"id":"5c8cb6c3-972b-47e1-bbee-0e9873872f33","keyword":"粘结性能","originalKeyword":"粘结性能"},{"id":"3f4f0e76-48bf-470c-8407-ac684eb8aa75","keyword":"能量释放率","originalKeyword":"能量释放率"},{"id":"29276816-5cd7-480c-8845-55c0cdb406bb","keyword":"夹芯结构","originalKeyword":"夹芯结构"}],"language":"zh","publisherId":"blgfhcl201704008","title":"湿热环境下泡桐木复合材料夹芯结构Ⅰ型界面剥离试验研究","volume":"","year":"2017"},{"abstractinfo":"复合材料泡沫夹层结构由于其比强度高、比刚度高、耐腐蚀等特点已广泛在土木工程领域中获得应用.然而,由于复合材料面板与夹芯材料在温度荷载作用下热膨胀系数显著不同,因此在面板与芯材之间的粘结层会产生温度应力,因此会降低界面的粘结性能.本文通过试验研究,系统地给出了复合材料泡沫夹层结构界面温度-应变分布规律,并通过理论建模,提出了界面温度-应变分布规律的计算模型,通过对比实验值与理论值,验证了理论分析模型的精确性.","authors":[{"authorName":"陈浩","id":"e0e8c4d4-0eb2-465c-9a78-ffb6951d06ca","originalAuthorName":"陈浩"},{"authorName":"王璐","id":"ed7f3f95-a9ff-46e3-a865-86767a063d4e","originalAuthorName":"王璐"},{"authorName":"刘伟庆","id":"7cdf8fd4-4ad9-45a3-adb3-f0b163d38cb6","originalAuthorName":"刘伟庆"},{"authorName":"马亚利","id":"6c65ae5f-4cf4-4b29-a851-bc56baf9b175","originalAuthorName":"马亚利"},{"authorName":"霍瑞丽","id":"d435a768-9327-4aaa-814f-ddbd3ba7787a","originalAuthorName":"霍瑞丽"},{"authorName":"方园","id":"195321fc-8d72-4918-8723-a1101f75144d","originalAuthorName":"方园"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.05.014","fpage":"750","id":"4f59ff2a-3ddb-4898-bc71-d0c2ad059369","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"c35216e1-6216-4661-9e03-13b35388e3b0","keyword":"夹层结构","originalKeyword":"夹层结构"},{"id":"a3909d1d-53a4-42e0-a2e2-25c7657b87ee","keyword":"界面温度-应变","originalKeyword":"界面温度-应变"},{"id":"5bc94541-3d69-4fa3-8ca0-67b9dc9e3da1","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"50995ba9-527e-430a-bd5c-bb38a5724940","keyword":"微元法","originalKeyword":"微元法"}],"language":"zh","publisherId":"clkxygc201605014","title":"复合材料泡沫夹层结构界面的温度-应变分布","volume":"34","year":"2016"},{"abstractinfo":"燃烧室是燃气轮机的核心部件之一,其中的燃烧过程的关键技术之一是如何避免和抑制振荡燃烧现象.本文简要阐述了发生振荡燃烧的机理以及亥姆霍兹共振器抑制振荡燃烧的声学分析,并且通过线性分析与CFD计算相结合的研究方法对燃烧系统的燃烧稳定性进行计算;同时分析了共振器共振频率和安装位置对燃烧稳定性的影响,得出在不同因素影响下,系统的稳定性和模态.这些分析有助于我们在设计和运行燃烧系统时,实现燃烧系统的安全、高效和清洁运行.","authors":[{"authorName":"高原","id":"f6f6a424-1ddf-46ba-94d5-5ad57bfc1a43","originalAuthorName":"高原"},{"authorName":"朱民","id":"297ec7fd-ff95-430b-bf27-1cf9d65a03e3","originalAuthorName":"朱民"}],"doi":"","fpage":"1048","id":"ae7033ba-6f99-49c1-a25c-6897943cea0c","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"aa04f436-77a9-41ae-b7f7-61a811422c44","keyword":"振荡燃烧","originalKeyword":"振荡燃烧"},{"id":"fa65b9ce-0f7c-42ad-8b9d-a32c423a0c17","keyword":"亥姆霍兹共振器","originalKeyword":"亥姆霍兹共振器"},{"id":"20777384-339e-4b83-a216-e4c859fdf766","keyword":"线性分析","originalKeyword":"线性分析"}],"language":"zh","publisherId":"gcrwlxb200906041","title":"亥姆霍兹共振器抑制振荡燃烧理论分析","volume":"30","year":"2009"},{"abstractinfo":"一台德产霍梅尔(Hommel)T8000表面粗糙度测量仪在使用几年之后出现故障无法使用,主要表现为:测量传感器电控无法左右移动及传感器检测失灵,整机不能实现全自动检测。通过对机械结构及电气连接方面的分析检查,结果表明:该机LV扫描驱动箱内部由于导向杆上生锈斑和螺杆表面污染产生杂质,造成了滑块轴向移动时机械卡阻;在电气方面,由于传感器接插件内部插针错位的异常断路,导致传感器不工作造成无信号输出。经过机械部分清理加油及传感器接插件部分重新校正处理后设备已完全恢复正常,可全程实现全自动测试。","authors":[{"authorName":"赵文冲","id":"53781839-684f-45e1-b4d2-554789073a7d","originalAuthorName":"赵文冲"},{"authorName":"唐军","id":"2d121b6e-3828-48c7-996e-8e6d20977ad4","originalAuthorName":"唐军"},{"authorName":"张黎明","id":"cb7f289b-4a8c-4633-8704-c8adbe61ec89","originalAuthorName":"张黎明"}],"doi":"","fpage":"59","id":"084450e8-559e-4563-bc7e-eeee8bd2c354","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"3ce75e4d-ed5e-423f-ba06-216a4f0cf60f","keyword":"粗糙度测量仪","originalKeyword":"粗糙度测量仪"},{"id":"c59def08-e48d-4b5f-8edd-678cbac81224","keyword":"霍梅尔T8000","originalKeyword":"霍梅尔T8000"},{"id":"a731bcc8-51c9-4e39-9f41-cb28a042b69d","keyword":"LV驱动箱","originalKeyword":"LV驱动箱"},{"id":"06b841cb-fbed-4ceb-8d71-f10f1bac4dd1","keyword":"传感器","originalKeyword":"传感器"},{"id":"9a71d1de-817d-44df-81b0-b3cfa468d586","keyword":"故障维修","originalKeyword":"故障维修"}],"language":"zh","publisherId":"wlcs201202017","title":"霍梅尔T8000表面粗糙度测量仪故障维修","volume":"","year":"2012"},{"abstractinfo":"一台德产霍梅尔(Hommel)T8000表面粗糙度测量仪在使用几年之后出现故障无法使用,主要表现为:测量传感器电控无法左右移动及传感器检测失灵,整机不能实现全自动检测。 通过对机械结构及电气连接方面的分析检查,结果表明:该机LV 扫描驱动箱内部由于导向杆上生锈斑和螺杆表面污染产生杂质,造成了滑块轴向移动时机械卡阻;在电气方面,由于传感器接插件内部插针错位的异常断路,导致传感器不工作造成无信号输出。经过机械部分清理加油及传感器接插件部分重新校正处理后设备已完全恢复正常,可全程实现全自动测试。","authors":[{"authorName":"赵文冲,唐军,张黎明","id":"b015ceb6-ee55-4464-8bc8-717ba8b89b62","originalAuthorName":"赵文冲,唐军,张黎明"}],"categoryName":"|","doi":"","fpage":"59","id":"d8b2f1d3-253a-43b3-b508-94764c4f2ae3","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"ee287532-12ea-48be-854c-a2c804aa23a2","keyword":"粗糙度测量仪 ","originalKeyword":"粗糙度测量仪 "},{"id":"7c90304b-0bf1-4a9b-b6ba-4cfaf470ab5a","keyword":" Hommel T8000 ","originalKeyword":" Hommel T8000 "},{"id":"85104907-baaa-4209-8804-cd2abde3a59a","keyword":" LV driving box ","originalKeyword":" LV driving box "},{"id":"29d474e9-f7a8-49da-a2ab-f6c4e5001d11","keyword":" sensor connector ","originalKeyword":" sensor connector "},{"id":"f1378865-6677-4178-947c-90c091e888d7","keyword":" fault repair","originalKeyword":" fault repair"}],"language":"zh","publisherId":"1001-0777_2012_2_3","title":"霍梅尔T8000表面粗糙度测量仪故障维修","volume":"30","year":"2012"},{"abstractinfo":"","authors":[],"doi":"","fpage":"22","id":"567a5c2f-7e88-4594-b3a8-94d421f371e3","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"4467fa31-3538-4562-94a3-1632cc2924a2","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jsgncl200406015","title":"霍伊斯勒电热合金","volume":"11","year":"2004"},{"abstractinfo":"本钢六号、七号高炉热风炉设计采用达涅利公司新技术,风温水平明显上了一个新台阶,热风炉的烘炉也采用一种更为安全快捷的方法.","authors":[{"authorName":"梁科","id":"500780bc-45b0-42ee-9977-fac0d1fa5d98","originalAuthorName":"梁科"},{"authorName":"李伟","id":"e3a3a117-1688-4347-b023-c2d20b2745f6","originalAuthorName":"李伟"}],"doi":"10.3969/j.issn.1000-6826.2006.05.011","fpage":"30","id":"8f562ba4-c67b-4c58-99b6-393b3351b46b","issue":"5","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"f85b81ac-b53e-4236-9add-02db1f533c95","keyword":"内燃式热风炉","originalKeyword":"内燃式热风炉"},{"id":"05834221-9004-4d67-9832-d695e7545c03","keyword":"技术特点","originalKeyword":"技术特点"},{"id":"8e3239e2-8ae7-4260-88e1-68073fd4391b","keyword":"烘炉","originalKeyword":"烘炉"}],"language":"zh","publisherId":"jssj200605011","title":"本钢霍戈文内燃式热风炉烘炉实践","volume":"","year":"2006"},{"abstractinfo":"潞西金矿位于三江构造转换带西南缘与印度地块--高黎贡山变质地体东缘过渡区的陇陵-瑞丽北北东向断裂带内,矿区赋矿地层与岩性主要为侏罗系泥质灰岩和二叠系泥硅质岩.在成矿规律研究的基础上,对矿区广岭坡、麦窝坝、勐莫矿段实施了γ能谱测量,通过各测区γ能谱测量总强度曲线及放射性测量结果统计特征值的分析,圈定了有利成矿地段,配合矿区其它地球化学勘查方法,取得了很好的找矿效果.","authors":[{"authorName":"普传杰","id":"60d45867-45c8-4ec1-828c-7d0824d54218","originalAuthorName":"普传杰"},{"authorName":"秦德先","id":"7b95afa7-2fb3-413b-a91d-47188d576268","originalAuthorName":"秦德先"},{"authorName":"高振敏","id":"ba5ba681-5fa3-4f2f-8f86-bde0f7a2a21f","originalAuthorName":"高振敏"},{"authorName":"陶炎","id":"55a2f197-f16f-472d-a8c8-cfd499237a61","originalAuthorName":"陶炎"},{"authorName":"胡广耀","id":"f011c233-d997-4459-aa45-34d2fa9f3dbe","originalAuthorName":"胡广耀"}],"doi":"10.3969/j.issn.1001-1277.2005.05.005","fpage":"17","id":"f8a94fb7-61df-4960-abd5-09cbbdf31263","issue":"5","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"5e7793e7-7bd6-4f03-bdad-602e454c718a","keyword":"金矿找矿","originalKeyword":"金矿找矿"},{"id":"04022b1e-0c9f-4f4b-890e-b2d85a712a4e","keyword":"γ能谱测量","originalKeyword":"γ能谱测量"},{"id":"d6a84527-d2d3-40bd-b6ce-27a58daa5e95","keyword":"云南潞西","originalKeyword":"云南潞西"}],"language":"zh","publisherId":"huangj200505005","title":"γ能谱测量在云南潞西金矿找矿中的应用","volume":"26","year":"2005"}],"totalpage":17,"totalrecord":164}