{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过时温等效原理,研究了一种快速评价HIPS材料后收缩性能的方法。结果表明:影响HIPS材料后收缩行为最关键因素是其不同尺度链段的松弛行为;高温热处理条件下,HIPS材料以主链松弛为主,而低温条件下以小尺寸链段运动的次级松弛为主,从而导致高温热处理的后收缩行为与室温不相符;通过降低热处理温度,在40℃~45℃热处理温度下放置168 h能够较好地模拟HIPS在室温下放置一个月的后收缩尺寸。","authors":[{"authorName":"陈平绪","id":"9d9ee3a4-6bf6-4fb8-a845-5a08ad363e0a","originalAuthorName":"陈平绪"},{"authorName":"李玉虎","id":"af4e8cd8-44d8-4bf1-8278-23782963ad73","originalAuthorName":"李玉虎"},{"authorName":"程庆","id":"09b153a0-0ca2-48cf-8a98-84c33b10187f","originalAuthorName":"程庆"},{"authorName":"王林","id":"9213ebeb-2394-44e0-8217-f6a1a6604e36","originalAuthorName":"王林"},{"authorName":"叶南飚","id":"4aec76aa-3643-4788-84ea-ef98f13ae38b","originalAuthorName":"叶南飚"},{"authorName":"曾幸荣","id":"92027b3a-df7a-47ac-ab09-a60a1b990159","originalAuthorName":"曾幸荣"}],"doi":"","fpage":"29","id":"b81f88f4-d11f-4845-80c6-3d18af91f50c","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"b0cb44ba-bb8b-4958-a7ea-542b4b47738e","keyword":"HIPS","originalKeyword":"HIPS"},{"id":"4188c9fd-566f-4f8a-aa75-3b75590f3342","keyword":"后收缩","originalKeyword":"后收缩"},{"id":"57f00286-965c-4ea8-8d24-d7ac64eb0ce7","keyword":"链段松弛","originalKeyword":"链段松弛"}],"language":"zh","publisherId":"hccllhyyy201504007","title":"一种快速评价HIPS材料后收缩性能的方法","volume":"","year":"2015"},{"abstractinfo":"通过熔融后冰水淬火和热处理方法制备了δ'晶型和α晶型的尼龙11薄膜试样.在42Hz~5MHz频率范围测得了室温至150℃的介电松弛频率谱,研究了二种晶型的尼龙11在室温以上的分子链运动.结果发现,尼龙11在δ'→α晶型转变之后,由HavriliakNegami经验公式拟合得到的分子链段和局域运动的松弛强度都减小,松弛时间则增大,表明退火之后尼龙11的分子链运动受到了抑制.","authors":[{"authorName":"朱俊","id":"b26dcfb0-9286-4e64-b285-98935ae91565","originalAuthorName":"朱俊"},{"authorName":"张兴元","id":"f6e7cde7-7dda-4ffb-8d58-a3e7a378785b","originalAuthorName":"张兴元"}],"doi":"","fpage":"953","id":"0284f075-5e7d-4346-a9e4-c17ca1d0bd7e","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"659311c7-aa67-41f0-ab2a-6323bfc0ad0f","keyword":"尼龙11","originalKeyword":"尼龙11"},{"id":"7df35b8b-e8b2-4cf1-a0f0-71ffe4708267","keyword":"晶型转变","originalKeyword":"晶型转变"},{"id":"d47dec71-d50d-4856-a4bc-a0c9d8355abb","keyword":"介电松弛","originalKeyword":"介电松弛"},{"id":"24eaff89-675f-4534-b7d6-5374bd91f090","keyword":"分子链运动","originalKeyword":"分子链运动"}],"language":"zh","publisherId":"gncl2004z1266","title":"尼龙11室温以上分子链运动的介电松弛研究","volume":"35","year":"2004"},{"abstractinfo":"用在不同温度下热处理的方法制备了具有不同结晶度的尼龙1010试样,通过测量热释电流研究了试样的分子链段运动与电荷存储输运特性.热释电流谱上显示两个电流峰,通过研究峰电流与极化场强的关系发现,62℃左右的α峰为偶极松弛峰,109℃左右的ρ峰为空间电荷峰.随着结晶度从0.05%增加到46.3%,尼龙1010的偶极松弛活化能由0.98增加到1.18eV,显示分子链段运动变得困难;陷阱深度则变浅,由1.36降低到1.13eV,表明适当的结晶度可提高对载流子的俘获能力,改变材料中电荷的存储与输运特性.","authors":[{"authorName":"陆红波","id":"785c8481-2bd9-4a0d-bf7a-b694bb698422","originalAuthorName":"陆红波"},{"authorName":"张兴元","id":"2e1005c6-611b-4f25-94db-a2cade858552","originalAuthorName":"张兴元"}],"doi":"","fpage":"1810","id":"e615adbe-c1fe-488f-9a29-4a8d9029d344","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"eba0fe24-bcd7-4899-9bd8-80e9f5b5944a","keyword":"尼龙1010","originalKeyword":"尼龙1010"},{"id":"aa768d10-3dfd-44b4-b593-965e042a6e9b","keyword":"结晶","originalKeyword":"结晶"},{"id":"e044ac2f-0ab7-433e-bd9f-f88150d45cb1","keyword":"热释电流","originalKeyword":"热释电流"},{"id":"58b2724e-4700-4dcb-83ee-4c8afb548d48","keyword":"偶极松弛","originalKeyword":"偶极松弛"},{"id":"145b4cc4-1eb1-453b-9b7e-2dc78c29238e","keyword":"陷阱","originalKeyword":"陷阱"}],"language":"zh","publisherId":"gncl2004z1504","title":"不同结晶度尼龙1010的分子链段运动与电荷存储输运","volume":"35","year":"2004"},{"abstractinfo":"为提高PBS基脂肪族聚酯的综合性能,通过ε-己内酯的开环聚合制备了端羟基的聚己内酯(PCL-OH),再通过熔融缩聚法制备了端羟基的聚(丁二酸丁二醇酯对苯二甲酸丁二醇酯)无规共聚物(PBST-OH),用氢化MDI(H12MDI)作为扩链剂,制得了可生物降解的聚酯聚氧酯(PPCLBST).采用核磁共振谱和红外光谱确定了PPCLBST的结构和组成,利用差示扫描量热仪和热重分析仪表征了PPCLBST的热性能和结晶性能,采用吸水率测试表征了其亲水性能.结果表明:PPCLBST的结晶主要由PBST-OH段产生,而PCL-OH段无法结晶,随PCL-OH链段含量的升高.其玻璃化温度下降,趋向于无定形态;PPCLBST的热降解分两步进行,第一段为PCL-OH链段的分解,第二段为PBST-OH链段的分解.由于同时含有硬段和软段,PPCLBST具有良好的热稳定性能,且比PBS有更为优良的亲水能力.","authors":[{"authorName":"郝瑞","id":"38f8fb6e-ee00-4204-80e9-81da08466f4a","originalAuthorName":"郝瑞"},{"authorName":"周艺峰","id":"b2bb71e3-68d4-4d56-a5e4-c7ca9ef6f82b","originalAuthorName":"周艺峰"},{"authorName":"聂王焰","id":"f7b77d73-154e-4884-96e2-548b89a0a627","originalAuthorName":"聂王焰"}],"doi":"","fpage":"58","id":"18e66218-bc9f-40ac-8c32-962d9c945670","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"22f15ce1-f9cc-4222-ad88-df25064d2cd6","keyword":"聚ε-己内酯","originalKeyword":"聚ε-己内酯"},{"id":"10a0e15b-8a0f-4df5-bdbb-26a66edcade4","keyword":"扩链","originalKeyword":"扩链"},{"id":"ee35bc10-3a81-4c7a-9e73-20c020907b3c","keyword":"脂肪/芳香族聚酯","originalKeyword":"脂肪/芳香族聚酯"},{"id":"e8653b2a-385a-4db7-a1b1-56f4f8cf4779","keyword":"降解高分子","originalKeyword":"降解高分子"}],"language":"zh","publisherId":"clkxygy201106011","title":"含PCL和PBST链段聚酯聚氨酯的合成与表征","volume":"19","year":"2011"},{"abstractinfo":"为了获得性能更优良的聚乳酸材料,以乳酸、ε-己内酯、丁二酸酐为原料,采用梯度升温法合成了聚乳酸嵌段共聚物,用IPDI对其扩链.采用乌氏黏度法、FT-IR、1H-NMR、TGA及XRD等手段对产物进行了表征.FT-IR和1H-NMR测试结果显示,预期的聚乳酸嵌段共聚物成功合成;几种聚合方法中,以先合成端羟基活性低聚物P(LA-CL),再加丁二酸酐与之共聚合成的产物P(LA-CL/SA)分子量最高,扩链后的产物分子量提高不多;P(LA-CL/SA)的热稳定性比PLA的低;XRD结果显示P(LA-CL/SA)为无定形峰,结晶度比PLA低.与PLA相比,改性后的聚乳酸嵌段共聚物分子量提高,更易降解,柔韧性增加.","authors":[{"authorName":"樊国栋","id":"11e8246a-c00c-45c6-a47e-f5292eda5dc1","originalAuthorName":"樊国栋"},{"authorName":"张春梅","id":"299713ec-a68a-4add-be94-ed3a9cf63077","originalAuthorName":"张春梅"},{"authorName":"李甜甜","id":"46cbe3d6-bbf8-4ea2-aebb-d1ffa9abcbff","originalAuthorName":"李甜甜"}],"doi":"","fpage":"70","id":"90741fde-a675-47da-ae1f-fc7e7294a1a0","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"956b42d2-f278-4656-9a38-f4202c3c6153","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"da4295ff-1d94-495c-b478-98eec845b6ec","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"08adbf05-98a5-4cd9-8e75-5f78966c2517","keyword":"异佛尔酮二异氰酸酯","originalKeyword":"异佛尔酮二异氰酸酯"},{"id":"38541cc6-95dd-49f2-8414-5d58b238e5f1","keyword":"端羟基共聚物","originalKeyword":"端羟基共聚物"},{"id":"9368d26f-90a9-478c-a1ff-7e4ce8ebd117","keyword":"梯度升温","originalKeyword":"梯度升温"}],"language":"zh","publisherId":"clkxygy201106013","title":"聚乳酸嵌段共聚物的制备及扩链研究","volume":"19","year":"2011"},{"abstractinfo":"综述了由聚氧乙烯链段与聚二烯烃、聚异丁烯、聚乙烯基吡啶、聚丙烯腈、聚丙烯酰胺或聚丙烯酸链段组成的各种嵌段共聚物及接枝共聚物的合成方法,并对其各种性能,包括两亲性质、络合碱金属离子性及微观相分离等进行了总结。","authors":[{"authorName":"谢洪泉","id":"340507ca-afb3-4124-9226-f3f32149c67f","originalAuthorName":"谢洪泉"}],"doi":"","fpage":"1","id":"6d66723f-6ce4-4de7-a85a-695198232500","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c05aaff3-62e1-4030-88ac-2062b322d829","keyword":"嵌段共聚物","originalKeyword":"嵌段共聚物"},{"id":"a13c6224-0dda-4419-be7a-01f62183549d","keyword":"接枝共聚物","originalKeyword":"接枝共聚物"},{"id":"3b7374e4-4652-47b3-a9da-164857d66972","keyword":"多相聚合物","originalKeyword":"多相聚合物"},{"id":"d11fe965-9668-478b-8a7a-80ccf26928c6","keyword":"两亲聚合物","originalKeyword":"两亲聚合物"},{"id":"e0df9e83-49f8-4dc6-b725-dd1c5baf18e3","keyword":"聚氧乙烯","originalKeyword":"聚氧乙烯"}],"language":"zh","publisherId":"gfzclkxygc200101001","title":"含聚氧乙烯链段的嵌段共聚物和接枝共聚物的合成及性能","volume":"17","year":"2001"},{"abstractinfo":"针对低成本有效去除环境中有害苯乙烯气体的需求,分别采用紫外(UV)和高能电子束(EB)辐照引发在聚丙烯(PP)非织造布上接枝丙烯酸十二酯,制备了能够快速吸附苯乙烯气体的功能非织造布.用衰减全反射傅里叶变换红外光谱、接触角和扫描电子显微镜对接枝前后非织造布的疏水烷基链段分布和形貌进行了表征,重点研究了在不同吸附温度和气体流速条件下疏水烷基链段分布对苯乙烯气体吸附效果的影响规律.结果表明,UV引发疏水烷基链段只分布在非织造布表层;EB引发疏水烷基链段相对均匀地分布在非织造布表层和内层.当接枝率为132%左右时,对苯乙烯气体的吸附透过时间由PP非织造布的50 min分别增加到UV引发接枝的80 min和EB引发接枝的120min.","authors":[{"authorName":"路晖","id":"1b60743c-4a20-4d8a-a4c4-dc8234ac10c5","originalAuthorName":"路晖"},{"authorName":"张环","id":"c0b51bd6-a34f-4866-b941-cae5b2f12dc8","originalAuthorName":"张环"},{"authorName":"魏俊富","id":"87cb638d-ab42-40aa-9d6a-bbe518ba45f4","originalAuthorName":"魏俊富"},{"authorName":"李永花","id":"b4d73a61-faa7-4439-99ea-aae5db44f1e6","originalAuthorName":"李永花"},{"authorName":"赵孔银","id":"d9a978b4-cf36-4515-92a9-daac35f5a0c9","originalAuthorName":"赵孔银"},{"authorName":"孙思佳","id":"6ba2582b-f4ac-4951-9ac8-97a015fd64c6","originalAuthorName":"孙思佳"}],"doi":"","fpage":"159","id":"63618582-1852-41a3-a888-156bf4a6e3ae","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"569c9ae8-b7c7-453a-be69-a46386f3491e","keyword":"疏水烷基链段分布","originalKeyword":"疏水烷基链段分布"},{"id":"4c5c91d5-c1fc-4bcc-95d1-ca5f24936a26","keyword":"聚丙烯非织造布","originalKeyword":"聚丙烯非织造布"},{"id":"501d987c-1d4e-4a3f-95fc-b20605f31675","keyword":"苯乙烯气体","originalKeyword":"苯乙烯气体"},{"id":"078fec1f-3cef-4106-b473-67ef4d72e186","keyword":"吸附","originalKeyword":"吸附"},{"id":"ca136b62-30f2-47a5-a3c4-df8bb5bcbe19","keyword":"接枝","originalKeyword":"接枝"}],"language":"zh","publisherId":"gfzclkxygc201409033","title":"非织造布上疏水链段分布对苯乙烯气体吸附效果的影响","volume":"30","year":"2014"},{"abstractinfo":"通过热刺激电流、差示扫描量热和扫描电镜研究离子液体对聚酰胺610结构的变化以及热刺激电流所反映偶极取向松弛和空间电荷的受陷、退陷和陷阱能级变化.可知离子液体/聚酰胺610复合材料偶极松弛和空间电荷松弛峰形状、强度显著依赖于离子液体含量.离子液体增塑使得偶极松弛峰电流强度增大,活化能减弱.随着离子液体含量增大,非晶区和晶区陷阱俘获空间电荷能力增加.离子液体含量增大使得非晶区被俘获空间电荷的稳定性下降、晶区被俘获空间电荷的稳定性基本不变.","authors":[{"authorName":"徐佩","id":"c917a9ce-9521-4745-bce6-cb2ef21b14f5","originalAuthorName":"徐佩"},{"authorName":"郝倩","id":"f1a7f1d4-df63-4d69-acde-3ea26530b10a","originalAuthorName":"郝倩"},{"authorName":"桂豪冠","id":"e8533f44-5f09-4242-871f-15f268e1cb26","originalAuthorName":"桂豪冠"},{"authorName":"杨善中","id":"3162d36a-b126-4e7f-94d4-2ad59a839aea","originalAuthorName":"杨善中"},{"authorName":"丁运生","id":"668a8174-5a8f-4434-9be2-010be56e3996","originalAuthorName":"丁运生"}],"doi":"","fpage":"54","id":"93cdbca0-5e5f-400b-b113-696c530c3588","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8478401e-5a92-4857-8f1c-f68ef48464da","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"26f0ce30-8ae8-44fc-b4de-21f136495826","keyword":"聚酰胺610","originalKeyword":"聚酰胺610"},{"id":"f2299b3d-1905-4987-9eb9-2307303395e4","keyword":"空间电荷","originalKeyword":"空间电荷"},{"id":"c3a5fcf3-ec54-42a8-b9b4-ece2825852a3","keyword":"链段运动","originalKeyword":"链段运动"}],"language":"zh","publisherId":"gfzclkxygc201408011","title":"离子液体对聚酰胺610分子链段运动与电荷存储特性的影响","volume":"30","year":"2014"},{"abstractinfo":"通过原位聚合的方法合成了聚对苯二甲酸乙二醇酯(PET)/Ti3N4纳米复合材料.通过多功能内耗仪和动态力学分析仪(DMA)对该纳米复合材料的蠕变及动态力学性能进行了测试分析,结果表明,随纳米粒子含量的增加,复合材料的蠕变能力降低,内耗峰的峰高具有相同的变化趋势,当纳米Ti3 N4添加量增加至3%时,其蠕变能力和内耗峰高分别降低为纯PET的7.1%和11.9%.但复合材料的储能模量较纯PET高,因此该复合材料有望在工程材料领域得到应用.","authors":[{"authorName":"康升红","id":"e7ad801d-cb80-40f3-b452-5c1b2f306103","originalAuthorName":"康升红"},{"authorName":"郑康","id":"18e4e8c7-5a66-4d94-8078-6fd713aa266b","originalAuthorName":"郑康"},{"authorName":"费广涛","id":"22f1fc25-5bcf-4598-805d-5abe70ad6b95","originalAuthorName":"费广涛"},{"authorName":"田兴友","id":"b5146a45-cd71-433a-bca7-9767452f919d","originalAuthorName":"田兴友"}],"doi":"","fpage":"39","id":"a32eb847-b3fb-497f-bc3b-0dbdaa8a44ab","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0ee79fc7-8560-4325-8634-650bdc432876","keyword":"聚对苯二甲酸乙二醇酯/Ti3N4纳米复合材料","originalKeyword":"聚对苯二甲酸乙二醇酯/Ti3N4纳米复合材料"},{"id":"c184bc65-a7b6-40ed-ad5b-07890b13622a","keyword":"松弛","originalKeyword":"松弛"},{"id":"86146b66-717a-48e6-9c47-2a65f3810501","keyword":"蠕变","originalKeyword":"蠕变"},{"id":"c6e228ed-72f5-4841-b0f8-f23fa20397f8","keyword":"结晶","originalKeyword":"结晶"}],"language":"zh","publisherId":"gfzclkxygc201312010","title":"聚对苯二甲酸乙二醇酯/Ti3N4纳米复合材料的链段松弛","volume":"29","year":"2013"},{"abstractinfo":"氨基树脂与磷酸酯组成的复配体系防火性能佳,但交联密度大,因此涂层的柔韧性、抗龟裂性差.为了改善体系柔韧性、抗龟裂性,将不同链长的聚乙二醇(PEG)与多聚磷酸(PPA)、多元醇合成聚磷酸酯,再与甲醚化的三聚氰胺甲醛树脂复配,制备了膨胀阻燃透明聚合物涂层.通过FT-IR、TG、硬度测试、柔韧性测试、SEM等手段,研究了PEG柔性链长对涂层柔韧性、抗龟裂性、阻燃性等的影响规律.结果表明:PEG链段的引入能有效改善涂层的柔韧性,链长越长,柔韧性、抗龟裂性越佳,但链长过长,阻燃性降低.","authors":[{"authorName":"胡晓仙","id":"e72b7078-e7a7-4b93-bd9b-d1289aabd815","originalAuthorName":"胡晓仙"},{"authorName":"洪玲","id":"06bc3828-6019-475d-9685-d1a1c6b4ba48","originalAuthorName":"洪玲"}],"doi":"","fpage":"42","id":"16111071-0800-4818-ad8a-595ca5740e4f","issue":"9","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"e6bc0cfb-8039-4481-893a-3bfdf74c87fe","keyword":"透明涂层","originalKeyword":"透明涂层"},{"id":"9c58aebd-e1c3-4c81-a717-a7f91b883a22","keyword":"膨胀阻燃","originalKeyword":"膨胀阻燃"},{"id":"b02ff987-9db5-44fb-a057-f3fca87aa7c2","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"},{"id":"7ad390f3-afb7-4c3e-ab5b-d1617da5f7f3","keyword":"柔韧性","originalKeyword":"柔韧性"}],"language":"zh","publisherId":"tlgy201309008","title":"聚乙二醇链段对透明防火涂层柔韧性及阻燃性的影响","volume":"43","year":"2013"}],"totalpage":1560,"totalrecord":15598}