欢迎登录材料期刊网

材料期刊网

高级检索

以纳米硅粉为硅源,乙酸铜为铜纳米粒子前驱体,双官能团甲基丙烯酸酯单体为溶剂和碳源,利用热引发聚合方法,结合高温氩气气氛煅烧,原位可控合成硅/铜/碳纳米杂化材料,并通过后续不同气氛(空气或者空气结合氢气)、不同温度条件下热处理,进一步调控杂化材料中碳基质含量,达到改善单质硅负极材料循环性能、提高杂化材料导电性能的目的。采用粉末衍射(XRD)、能量弥散 X射线谱图(EDX)、热重分析实验(TGA)、扫描电镜(SEM)、电化学阻抗测试(EIS)以及锂离子电池循环性能测试等方法对杂化材料的结构、结晶、组成、形貌、导电性能以及锂电循环性能进行了较为系统的研究。研究结果表明,单质硅以及单质铜均匀分布在碳基质中;单质铜的形成有效提高了杂化材料的导电性;后期热处理能够进一步调控碳基质含量,从而使得杂化材料初始放电比容量从1156 mAh/g提高到1997 mAh/g,而循环性能得到一定程度保持。

A series of Si/Cu/C nanohybrids were synthesized using difunctional methacrylate monomer as sol-vent and carbon source,silicon nanoparticles as active matter,and copper acetate as precursor for copper element. Thermal polymerization was applied to form the polymer/Si/copper acetate composites,followed by high temperature calcination in argon,and annealing at moderate temperature in different atmosphere (air or air plus hydrogen).A se-ries of different characterization methods including XRD,EDX,SEM,TGA,EIS,and cyclic performance test were applied to investigate the composition,structure,crystallinity,morphology,electron conductivity,and cyclic per-formance in a systematic way.The results showed that both the silicon nanoparticles and the in situ formed copper particles were homogeneously dispersed in the carbon matrix.The formation of the copper particles effectively en-hanced the electron conductivity of the nanohybrid.The annealing process further adj usted the content of the carbon matrix,leading to the significant improvement of the initial specific capacity from 1156 mAh/g to 1997 mAh/g with moderate cyclic stability.

参考文献

[1] Winter M.;Spahr ME.;Novak P.;Besenhard JO..Insertion electrode materials for rechargeable lithium batteries [Review][J].Advanced Materials,199810(10):725-763.
[2] J. Yang;M. Winter;J.O. Besenhard.Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J].Solid state ionics,19961/4(1/4):281-287.
[3] Volodymyr G. Khomenko;Viacheslav Z. Barsukov.Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries[J].Electrochimica Acta,20078(8):2829-2840.
[4] Xiong Wen (David) Lou;Lynden A. Archer;Zichao Yang.Hollow Micro-/Nanostructures: Synthesis and Applications[J].Advanced Materials,200821(21):3987-4019.
[5] Liu, X.H.;Zhong, L.;Huang, S.;Mao, S.X.;Zhu, T.;Huang, J.Y..Size-dependent fracture of silicon nanoparticles during lithiation[J].ACS nano,20122(2):1522-1531.
[6] Byoung Man Bang;Hyunjung Kim;Jung-Pil Lee;Jaephil Cho;Soojin Park.Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithographyf[J].Energy & environmental science: EES,20119(9):3395-3399.
[7] Song, T.;Xia, J.;Lee, J.-H.;Lee, D.H.;Kwon, M.-S.;Choi, J.-M.;Wu, J.;Doo, S.K.;Chang, H.;Park, W.I.;Zang, D.S.;Kim, H.;Huang, Y.;Hwang, K.-C.;Rogers, J.A.;Paik, U..Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J].Nano letters,20105(5):1710-1716.
[8] Chunsheng Wang;A.John Appleby;Frank E.Little.Charge-discharge stability of graphite anodes for lithium-ion batteries[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,20011/2(1/2):33-46.
[9] Jing Wang;Hailei Zhao;Jianchao He;Chunmei Wang;Jie Wang.Nano-sized SiOx/C composite anode for lithium ion batteries[J].Journal of Power Sources,201110(10):4806-4810.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%