欢迎登录材料期刊网

材料期刊网

高级检索

为了优化船用结构钢合金元素,提高其耐微生物腐蚀性能,研究了船舶用结构钢冶炼中常见的10种重金属元素对海洋微生物生长的抑制能力,探讨了金属离子毒性与细菌胞外分泌物(EPS)选择吸附的关系,并采用电化学、倒置荧光显微镜和原子力显微镜分析了经过合金元素优化后的试样的耐微生物腐蚀性能。实验结果表明,金属离子抑制毒性与 EPS 的选择吸附有密切关系,EPS 对这些金属离子的吸附能力越强,该金属离子对细菌的毒性就越大;对于革兰氏阴性菌而言,各重金属离子的毒性大小为 Cu2+> Zn2+>Ni2+>Pb2+>Cr3+>V5+>Co2+>Mo6+>Mn2+> Al3+,对于革兰氏阳性菌而言,各重金属离子的毒性大小为 Ni2+> Zn2+> Cu2+> Co2+> Cr3+>Pb2+>V5+> Mn2+> Mo6+> Al3+;优化 Ni、Cu、Cr 三种合金元素在试样中的含量,在一定程度上均可以加强试样在无菌介质和有菌介质中的耐腐蚀性能。同时提高合金元素 Ni、Cu 和 Cr 在钢材中的含量对于提高材料的耐微生物附着腐蚀性能最为显著。

In order to optimize alloying elements of marine structural steel and improve the microbial corrosion resistance performance,the effect of 10 kinds of heavy metals on the growth of marine microbial,and the relationship between the ability of selective adsorption of bacterial extracellular secretion (EPS)and the toxicity of metal ion were discussed,and corrosion performance of the optimized metal coupons was studied by electrochemical,inverted fluores-cence microscope and atomic force microscopy(AFM).The experimental results showed that the stronger the adsorp-tion ability of EPS,the greater the toxicity of the metal ions on bacteria,the order of toxicity as followed:Cu2+ >Zn2+>Ni2+ >Pb2+ >Cr3 + > V5 + >Co2+ > Mo6 + > Mn2+ > Al3 + for Gram negative bacteria,and Ni2+ > Zn2+ > Cu2+ >Co2+ >Cr3 + >Pb2+ >V5 + >Mn2+ >Mo6 + >Al3 + for Gram-positive bacteria.Respectively increasing the Ni,Cu and Cr content in the steel could partly enhance the corrosion resistance of the coupons to culture with and without bacteria.Moreover,the effect of the inhibitor microbiology corrosion of the coupon with addition of Ni,Cu and Cr content at the same time was most significant.

参考文献

[1] 尹衍升;董丽华;刘涛.海洋材料的微生物附着腐蚀[M].北京:科学出版社,2012
[2] Jun Ren;Pingping Han;Houliang Wei .Fouling-Resistant Behavior of Silver Nanoparticle-Modified Surfaces against the Bioadhesion of Microalgae[J].ACS applied materials & interfaces,2014(6):3829-3838.
[3] Yao J H et al.Marine anti-biofouling system with poly(epsi-lon-caprolactone)/clay composite as carrier of organic anti-foutant[J].J Mater Chem B,2014,31(2):5 100.
[4] Ma, C.;Yang, H.;Zhou, X.;Wu, B.;Zhang, G..Polymeric material for anti-biofouling[J].Colloids and Surfaces, B. Biointerfaces,2012:31-35.
[5] Kong M;Yoon H O;Kim J A.Application of CLSM and SEM analyses for biofouling study[A].Yeosu,2012
[6] Fa?, F.;Carteau, D.;Linossier, I.;Vallée-Réhel, K. .Evaluation of anti-microfouling activity of marine paints by microscopical techniques[J].Progress in Organic Coatings: An International Review Journal,2011(3):579-585.
[7] Elif Cagda Kandemir;Hakan Alyuruk;Levent Cavas .Fouling organisms on the rebars and protection by antifouling paint[J].Anti-Corrosion Methods and Materials,2012(5):215-219.
[8] 周茂洪,赵肖为,周峙苗.几种重金属离子对光合细菌生长的抑制效应[J].生态学杂志,2002(04):6-11.
[9] Scheerder, J.;Breur, R.;Slaghek, T.;Holtman, W.;Vennik, M.;Ferrari, G. .Exopolysaccharides (EPS) as anti-corrosive additives for coatings[J].Progress in Organic Coatings: An International Review Journal,2012(3):224-230.
[10] Dong Z H;Liu T;Liu H F .Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel cor-rosion[J].BIOFOULING,2011,27(5):487.
[11] Gopinath, K.P.;Kathiravan, M.N.;Srinivasan, R.;Sankaranarayanan, S. .Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2011(4):3687-3693.
[12] Schreiber D R;Millero F J;Gordon A S .Production of an extracellular copper-binding compound by the heterotrophic marine bacterium vibrio-alginolyticus[J].Marine Chemistry,1990,28(4):275.
[13] Ceyhun SB;Senturk M;Yerlikaya E;Erdogan O;Kufrevioglu OI;Ekinci D .Purification and characterization of carbonic anhydrase from the teleost fish Dicentrarchus labrax (European seabass) liver and toxicological effects of metals on enzyme activity.[J].Environmental toxicology and pharmacology,2011(1):69-74.
[14] Suzuki I;Hisamatsu Y;Masuko N .Nature of atmospheric rust on iron[J].Journal of the Electrochemical Society,1980,127(10):2210.
[15] Schwitter H;Bohni H .Influence of accelerated weathering on the corrosion of low-alloy steels[J].Journal of the Electrochemical Society,1980,127(1):15.
[16] Choi Y S;Shim J J;Kim J G .Effects of Cr,Cu,Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water[J].Journal of Alloys and Compounds,2005,391(1):162.
[17] Yanlei Zhou,Jun Chen,Yang Xu,Zhenyu Liu.Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl-Containing Environment[J].材料科学技术学报(英文版),2013(02):168-174.
[18] 郝献超,肖葵,张汉青,董超芳,李晓刚.模拟海洋大气环境下Cu和Cr对耐候钢耐腐蚀性能的影响[J].材料保护,2009(01):21-23,43.
[19] Nivens D E;Nichols P D et al.Reversible acceleration of the corrosion of AISI 304 stainless steel exposed to seawater induced by growth and secretions of the marine bacterium vibrio natriegens[J].CORROSION,1986,42(4):204.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%