欢迎登录材料期刊网

材料期刊网

高级检索

储锂材料是影响锂离子电池性能的关键因素之一,已成为国际上锂离子电池材料研究领域的热点和重点。综述了锂离子电池负极储锂材料的研究进展,但非简单地重复负极储锂材料发展的全部研究。重点关注了三大类负极储锂材料的电化学特性、储锂机理和主要电化学改性途径,并指出了三类负极储锂材料存在的技术问题和今后的研究方向。

As one of the key factors for determining the electrochemical properties,lithium storage materials have become the focus in the research field of lithium-ion battery materials.The progress in the lithium storage materia-ls as anodes for lithium-ion batteries is reviewed,but it is not the scope to retrace the overall studies.The survey highlights electrochemical characteristics,lithium storage mechanism and main ways for improving electrochemical properties of three types of lithium storage materials.In addition,it also discusses the technical challenges and future directions for lithium storage materials as anodes for lithium-ion batteries.

参考文献

[1] Schlapbach L;Züttle A .Hydrogen-storage materials for mobile applications[J].NATURE,2001,414:353.
[2] Palacin M R .Recent advances in rechargeable battery mate-rials:A chemist′s perspective[J].CHEMICAL SOCIETY REVIEWS,2009,38:2565.
[3] Liu C;Li F;Ma L P et al.Advanced material for energy storage[J].Advanced Materials,2010,22:E28.
[4] Nagaura T;Tozawa K .Lithium-ion rechargeable battery[J].Prog Batteries Solar Cells,1990,9:209.
[5] Ge H;Li N;Li D Y et al.Study on the theoretical capaci-ty of spinel lithium titanate induced by low-potential interca-lation[J].J Phys Chem C,2009,113:6324.
[6] Ohzuku T;Iwakoshi Y;Sawai K .Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion cell[J].Journal of the Electrochemical Society,1993,140:2490.
[7] Mabuchi A.;Fujimoto H.;Kasuh T.;Tokumitsu K. .CHARGE-DISCHARGE CHARACTERISTICS OF THE MESOCARBON MICROBEADS HEAT-TREATED AT DIFFERENT TEMPERATURES[J].Journal of the Electrochemical Society,1995(4):1041-1046.
[8] Fey G T K;Chen C L .High-capacity carbons for lithium-ion batteries prepared from rice husk[J].Journal of Power Sources,2001,97-98:47.
[9] Wu Y P;Rahm E;Holze R .Carbon anode materials for lithium ion batteries[J].Journal of Power Sources,2003,114:228.
[10] Liu J;Xue D F .Hollow nanostructured anode materials for Li-ion batteries[J].Nanoscale Res Lett,2010,5:1525.
[11] Zhou F D;Qiu K H;Peng G C et al.Silver/carbon nano-tube hybrids:A novel conductive network for high-rate lit-hium ion batteries[J].Electrochimica Acta,2015,151:16.
[12] Wang X X;Wang J N;Chang H et al.Preparation of short Li-ion batteries[J].Advanced Functional Materials,2007,77:3613.
[13] He B;Li W C;Lu A H .High nitrogen-content carbon nanosheets formed using the Schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion bat-teries[J].J Mater Chem A,2015,3:579.
[14] Yoo E J;Kim J;Hosono E et al.Large reversible Li sto-lithium ion batteries[J].Nano Letters,2008(8):2277.
[15] Li R M;Cao A M;Zhang Y J et al.Formation of nitrogen-mine[J].ACS Appl Mater Interfaces,2014,6:20574.
[16] Lee, S.W.;Yabuuchi, N.;Gallant, B.M.;Chen, S.;Kim, B.-S.;Hammond, P.T.;Shao-Horn, Y. .High-power lithium batteries from functionalized carbon-nanotube electrodes[J].Nature nanotechnology,2010(7):531-537.
[17] Li X F;Geng D S;Zhang Y et al.Superior cycle stability ion batteries[J].ELECTROCHEMISTRY COMMUNICATIONS,2011,13:822.
[18] Wang H G;Wang Y H;Li Y H et al.Exceptional electro-lithium storage[J].CARBON,2015,82:116.
[19] Han F;Bai Y;Liu R et al.Template-free synthesis of in-mance anode material in lithium-ion batteries[J].Adv Ener-terconnected hollow carbon nanospheres for high-perfor-gy Mater,2011,1:798.
[20] Sun Z;Song X F;Zhang P et al.Template-assisted syn-large pore volume as anode materials in Li-ion batteries[J].thesis of multi-shelled carbon hollow spheres with an ultra-RSC Adv,2015,5:3657.
[21] Bulushevaa L G;Okotruba A V;Kurenyaa A G et al.tube anode in Li-ion batteries[J].CARBON,2011,49:4013.
[22] Saravanan K R;Kalaiselv N .Nitrogen containing bio-carbon as a potential anode for lithium batteries[J].CARBON,2015,81:43.
[23] Hu Y S;Adelhelm P;Smarsly B M et al.Synthesis of hiera-rchically porous carbon monoliths with highly ordered micro-ries with high-rate capability[J].Advanced Functional Materials,2007,7
[24] Zhang X;Fan C L;Li L F et al.Hard carbon wrapped in graphene networks as lithium ion battery anode[J].Electro-chim Acta,2014,149:94.
[25] Chang J C;Tzeng Y F;Chen J M et al.Carbon nanobeads teries[J].Electrochimica Acta,2009,54:7066.
[26] Menne S;Schroeder M;Vogl T et al.Carbonaceous ano-liquids-based electrolytes[J].Journal of Power Sources,2014,266
[27] Subramanian V;Zhu H W;Wei B Q .High rate reversibility bon nanofibers[J].Journal of Physical Chemistry B,2006,110:7178.
[28] Zhang H T;Sun X Z;Zhang X et al.High-capacity nano-carbon anodes or lithium-ion batteries[J].Journal of Alloys and Compounds,2015,622:783.
[29] Vinayan B P;Ramaprabhu S .Facile synthesis of SnO2 nano-for ultrahigh capacity lithium ion battery applications[J].J particles dispersed nitrogen doped graphene anode material Mater Chem A,2013,1:3865.
[30] Wagemaker M;Mulder F M .Study of the insertion mecha-and absorption spectroscopy[J].Accounts of Chemical Research,2013,46
[31] Hong Z;Wei M .Layered titanate nanostructures and their batteries[J].J Mater Chem A,2013,1:4403.
[32] Colbow K M;Dahn J R;Haering R R .Structure and elec-trochemistry of the spinel oxides LiTi2 O4 and Li43 Ti5 3 O4[J].Journal of Power Sources,1989,26:397.
[33] Li X;Wang C .Engineering nanostructured anodes via elec-battery application[J].J Mater Chem A,2013,1:165.
[34] Zhao H;Li Y;Zhu Z et al.Structural and electrochemical characteristics of Li4-x Alx Ti5 O1 2 as anode material for li-thium-ion batteries[J].Electrochimica Acta,2008,53(24):7079.
[35] Li X;Qu M;Yu Z .Structural and electrochemical perfor-mances of Li4 Ti5-x Zrx O1 2 anode material for lithium-ion bat-teries[J].Journal of Alloys and Compounds,2009,487(1-2):L12.
[36] Ting-Feng Yi;J. Shu;Yan-Rong Zhu;Xiao-Dong Zhu;Cai-Bo Yue;An-Na Zhou;Rong-Sun Zhu .High-performance Li_4Ti_(5-x)V_xO_(12) (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery[J].Electrochimica Acta,2009(28):7464-7470.
[37] C.H.Chen;J.T.Vaughey;A.N.Jansen;D.W.Dees;A.J.Kahaian;T.Goacher;M.M.Thackeray .Studies of Mg-Substituted Li_(4-x)Mg_xTi_5O_(12) Spinel Electrodes (0<=x<=1) for Lithium Batteries[J].Journal of the Electrochemical Society,2001(1):A102-A104.
[38] Sun Y K;Jung D J;Lee Y S et al.Synthesis and electro-chemical characterization of spinel Li[Li(1-x)/3 Crx Ti(5-2x)/3]-O4 anode materials[J].Journal of Power Sources,2004,125(2):242.
[39] 唐致远,阳晓霞,陈玉红,李昌盛,焦延峰,贺艳兵.Mg2+、Zr4+离子掺杂对Li4Ti5O12电化学性能的影响[J].精细化工,2007(03):273-277.
[40] Chih-Yuan Lin;Jenq-Gong Duh .Porous Li_4Ti_5O_(12) anode material synthesized by one-step solid state method for electrochemical properties enhancement[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(8):3682-3685.
[41] Kim S;Fang S H;Zhang Z X et al.The electrochemical anode[J].Journal of Power Sources,2014,268:294.
[42] Chen J Z;Yang L .Synthesis of hierarchical mesoporous nest-like Li4 Ti5 O1 2 for high-rate lithium ion batteries[J].Journal of Power Sources,2012,200:59.
[43] Nugroho A;Yoon D;Joo O S et al.Continuous synthesis electrochemical performance for anode in Li-ion batteries[J].of Li4 Ti5 O1 2 nanoparticles in supercritical fluids and their Chem Eng J,2014,258:357.
[44] Wang J Q;Yang Z Z;Li W H .Nitridation Br-doped Li4 Ti5 O1 2 anode for high rate lithium ion batteries[J].Journal of Power Sources,2014,266:323.
[45] Kuo Y C;Lin J Y .One-pot sol-gel synthesis of Li4 Ti5 O1 2/C anode materials for high-performance Li-ion batteries[J].Electrochimica Acta,2014,142:43.
[46] Li W;Wu G;Araujo C M et al.Li+ ion conductivity and ron Sci, diffusion mechanism inα-Li3 N andβ-Li3 N[{?}J].,2010,3:1524.
[47] Wu S;Dong Z;Wu P et al.Effect of transition metal(M=Co,Ni,Cu)substitution on electronic structure and vacancy formation of Li3 N[J].Journal of Materials Chemistry,2011,21:165.
[48] Yamada A;Matsumoto S;Nakamura Y .Direct solid-state synthesis and large-capacity anode operation of Li3-x Fex N[J].Journal of Materials Chemistry,2011,21:10021.
[49] Bach S;Pereira-Ramos J P;Ducros J B et al.Structural prates Li3-x Cux N[J].Solid State Ionicis,2009,180:231.
[50] Ducros J B;Bach S;Pereira Ramos J P et al.Comparison containing cobalt,nickel and copper in the 1 V-0.02 V po-of the electrochemical properties of metallic layered nitrides tential range[J].Electrochem Commum,2007,9:2496.
[51] Shodai T.;Suzuki T.;Sakurai Y. .Reaction mechanisms of Li_(2.6)Co_(0.4)N anode material[J].Solid state ionics,1999(1/4):85-93.
[52] Huggins RA. .Alternative materials for negative electrodes in lithium systems[J].Solid state ionics,2002(Pt.A):61-68.
[53] Liu Y;Horikawa K;Fujiyosi M et al.The study of doped gonal Li2.6 Co0.4 N[J].Journal of the Electrochemical Society,2004,151:A1450.
[54] Liu Y;Hanai K;Horikawa K et al.Electrochemical cha-anode material for lithium secondary batteries[J].Mater racterization of a novel Si-graphite-Li2.6 Co0.4 N composite as Chem Phys,2005,89:80.
[55] Sun H;He XM;Li JJ;Ren JG;Jiang CY;Wan CR .Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries[J].Solid state ionics,2006(15/16):1331-1334.
[56] Liu D;Zhan S;Chen G et al.High energy density lithium ion batteries using Li2.6 Co0.4-x Cux N(anode)and Cu0.04-V2 O5(cathode)electrode materials[J].Materials Letters,2008,62:4210.
[57] Liu Y;Horikawa K;Fujiyosi M et al.Novel composite lithium secondary batteries[J].Solid State Ionicis,2004,172:69.
[58] Zhang W J .Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries[J].Journal of Power Sources,2011,196:877.
[59] Ryu J H;Kim J W;Sung Y E et al.Failure modes of sili-[J].Electrochemical and Solid State Letters,2004,7:A306.
[60] Tamura N;Ohshita R;Fujimoto M et al.Study on the[J].Journal of Power Sources,2002,107:48.
[61] Hwang S M;Lee H Y;Jang S W et al.Lithium insertion in SiAg powders produced by mechanical alloying[J].Elec-trochem Solid-State Lett,2001,4:A97.
[62] Roberts G A;Cairns E J;Reimer J A .Magnesium silicide as a negative electrode material for lithium-ion batteries[J].Journal of Power Sources,2002,110:424.
[63] Yang J.;Imanishi N.;Xie JY.;Yamamoto O.;Takeda Y. .Intermetallic SnSbx compounds for lithium insertion hosts[J].Solid state ionics,2000(3/4):189-194.
[64] Yang J;Winter M;Besenhard J O .Small particle size mul-tiphase Li-alloy anodes for lithium-ionbatteries[J].Solid State Ionicis,1996,90:281.
[65] Liu Y F;He Y P;Ma R et al.Improved lithium storage driven chemical reaction[J].ELECTROCHEMISTRY COMMUNICATIONS,2012,25:15.
[66] Wang G X;Sun L;Bradhurst D H et al.Innovative nano-size lithium storage alloys with silica as active centre[J].Journal of Power Sources,2000,88:278.
[67] Kim I S;Kumta P N;Blomgren G E .Si/TiN nanocompo-sites novel anode materials for Li-ion batteries[J].Electro-chem Solid-State Lett,2000,3:493.
[68] Mao O;Turner R L;Courtney I A et al.Active/inactive nanocomposites as anodes for Li-ion batteries[J].Electro-chem Solid-State Lett,1999,2:3.
[69] Zhang, H.;Braun, P.V. .Three-dimensional metal scaffold supported bicontinuous silicon battery anodes[J].Nano letters,2012(6):2778-2783.
[70] Wolfenstine J;Campos S;Foster D et al.Nano-scale Cu6 Sn5 anode[J].Journal of Power Sources,2002,109:230.
[71] Graetz J;Ahn C C;Yazami R et al.Highly reversible li-thium storage in nanostructured silicon[J].Electrochemical and Solid-State Letters,2003,6:A194.
[72] Ge, M.;Rong, J.;Fang, X.;Zhou, C. .Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J].Nano letters,2012(5):2318-2323.
[73] Lee H Y;Lee S M .Carbon-coated nano-Si dispersed oxi-des/graphite composites as anode material for lithium ion batteries[J].Electrochem Commum,2004,6:465.
[74] Lee S I;Yoon S;Park C M et al.Reaction mechanism and de for Li-ion batteries[J].Electrochimica Acta,2008,54:364.
[75] Noh M;Kwon Y;Lee H et al.Amorphous carbon-coated tin anode material for lithium secondary battery[J].CHEMISTRY OF MATERIALS,2005,17:1926.
[76] Kwon, Y;Cho, J .High capacity carbon-coated Si70Sn30 nanoalloys for lithium battery anode material[J].Chemical communications,2008(9):1109-1111.
[77] Kim H;Cho J .Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material[J].Nano letters,2008(11):3688-3691.
[78] Lee J H;Kong B S et al.Fabrication of single-w alled car-bon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-fil-tration for high-performance lithium battery electrodes[J].Journal of Power Sources,2009,194:520.
[79] Liu N;Lu Z D;Zhao J et al.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J].Nature Nanotechnology,2014,10:1038.
[80] Yang S B;Song H H et al.Nanosized tin and tin oxides loaded expanded mesocaron microbeads as negative electrode material for lithium-ion batteries[J].Journal of Power Sources,2007,173:487.
[81] Zhao B;Lin L .Phase and morphological transitions of ti-tania/titanate nanostructures from an acid to an alkali hydro-thermal environment[J].J Mater Chem A,2013,5:1659.
[82] Larcher D;Sudant G;Leriche J B et al.The electrochemi-cal reduction of Co3 O4 in a lithium cell[J].Journal of the Electrochemical Society,2002,149:A234.
[83] Ji L;Lin Z;Alcoutlabi M et al.Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J].Energy Environ Sci,2011,4:2682.
[84] Poizot P;Laruelle S;Grugeon S et al.Rationalization of the low-potential reactivity of 3d-metal-based inorganic com-pounds toward Li[J].Journal of the Electrochemical Society,2002,149:A1212.
[85] Poizot P;Laruelle S;Grugeon S et al.Nano-sized transi-tion-metal oxides as negative-electrode materials for lithium-ion batteries[J].NATURE,2000,407:496.
[86] Yuan ZY.;Huang F.;Feng CQ.;Sun JT.;Zhou YH. .Synthesis and electrochemical performance of nanosized Co3O4[J].Materials Chemistry and Physics,2003(1):1-4.
[87] Li WY;Xu LN;Chen J .Co3O4 nanomaterials in lithium-ion batteries and gas sensors[J].Advanced functional materials,2005(5):851-857.
[88] Jin S L;Deng H G;Long D H et al.Facile synthesis of hierarchically structured Fe3 O4/carbon micro-flowers and their application to lithium-ion battery anodes[J].Journal of Power Sources,2011,196:3887.
[89] Xue, X.-Y.;Yuan, S.;Xing, L.-L.;Chen, Z.-H.;He, B.;Chen, Y.-J. .Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes[J].Chemical communications,2011(16):4718-4720.
[90] Koo, B.;Xiong, H.;Slater, M.D.;Prakapenka, V.B.;Balasubramanian, M.;Podsiadlo, P.;Johnson, C.S.;Rajh, T.;Shevchenko, E.V. .Hollow iron oxide nanoparticles for application in lithium ion batteries[J].Nano letters,2012(5):2429-2435.
[91] Liu J;Li Y;Fan H et al.Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis:Large-area design and reversible lithium storage[J].CHEMISTRY OF MATERIALS,2009,22:212.
[92] Kang N;Park J H;Choi J et al.Nanoparticulate iron oxide materials for lithium ion batteries[J].Angew Chem Int Ed, tubes from microporous organic nanotubes as stable anode,2012,51:6626.
[93] Ma X H;Feng X Y;Song C et al.Facile synthesis of flo-materials for lithium-ion batteries[J].Electrochim Acta, wer-like and yarn-like α-Fe2 O3 spherical clusters as anode,2013,93:131.
[94] Sohn H;Chen Z;Jung Y S et al.Robust lithium-ion ano-[J].J Mater Chem A,2013,1:4539.
[95] Xia Y;Zhang W K;Xiao Z et al.Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries[J].Journal of Materials Chemistry,2012,22:9209.
[96] Tao Tao;Alexey M. Glushenkov;Chaofeng Zhang .MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity-composite anode for Li-ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(25):9350-9355.
[97] Liu H J;Bo S H;Cui W J et al.Nano-sized cobalt oxide/material for lithium-ion batteries[J].Electrochim Acta, mesoporous carbon sphere composites as negtive electrode,2008,53:6497.
[98] Xiao H;Xia Y;Zhang W K et al.Template-free synthesis of hollow α-Fe2 O3 microcubes for advanced lithium-ion bat-teries[J].J Mater Chem A,2013,1:2307.
[99] Oumellal Y;Rougier A;Nazri G A et al.Metal hydrides for lithium-ion batteries[J].NATURE MATERIALS,2008,7:916.
[100] Mason T H;Liu X;Hong J et al.First-principle study of anodes in the Li-Mg-B-N-H system[J].J Phys Chem C, novel conversion reactions for high-capacity Li-ion battery,2011,115:16681.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%