欢迎登录材料期刊网

材料期刊网

高级检索

综述了新型高温结构材料TiAl合金的高周疲劳行为基本特征,包括疲劳极限、疲劳强度和应力-寿命行为.分析TiAl合金高周疲劳S-N曲线特点发现,TiAl合金不具有疲劳极限,合金成分和组织形态是影响TiAl合金疲劳强度的关键因素.总结不同温度下的TiAl合金高周疲劳性能发现,当温度由韧-脆转变温度以下提高至该温度以上时,合金的高周疲劳寿命对循环应力变化的敏感性得到了明显改善.此外,还着重讨论了TiAl合金层片组织的疲劳寿命波动性问题,认为层片组织的随机取向是影响疲劳裂纹形核和小裂纹扩展过程的关键因素,从而导致合金高周疲劳寿命产生明显波动.根据该波动机理,探讨了增加TiAl合金高周疲劳寿命、降低其波动性的组织优化途径.

参考文献

[1] Meyers M A;Chawla K K.Mechanical behavior of materials[M].Cambridge,UK:Cambridge University Press,2009:713.
[2] Kim Y W .Ordered intermetallic alloys,part Ⅲ:Gamma titanium aluminides[J].JOM,1994,46(07):30.
[3] 张永刚;韩雅芳;陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001:782,761.
[4] Kim Y W .Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J].ACTA METALLURGICA ET MATERIALIA,1992,40(06):1121.
[5] Chan K S .The fatigue resistance of TiAl-based alloys[J].JOM,1997,49(07):53.
[6] Dowling W E;Donlon W T.The fatigue behavior of γ/α2 titanium aluminides[A].Cambridge,UK:Cambridge University Press,1990:561.
[7] Zhou Y;Wang J Q;Zhang B et al.High-temperature fatigue property of Ti46Al8Nb alloy with the fully lamellar microstructure[J].INTERMETALLICS,2012,24:7.
[8] Kumpfert J.;Dimiduk DM.;Kim YW. .EFFECT OF MICROSTRUCTURE ON FATIGUE AND TENSILE PROPERTIES OF THE GAMMA TIAL ALLOY TI-46.5AL-3.ONB-2.1CR-0.2W[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):465-473.
[9] Jha S K;Larsen J M;Rosenberger A H .The role of competing mechanisms in the fatigue life variability of a nearly fully-lamellar γ-TiAl based alloy[J].ACTA MATERIALIA,2005,53(05):1293.
[10] 崔玉友,杨锐.γ-TiAl合金的高周疲劳行为[J].金属学报,2002(z1):497-499.
[11] G. HENAFF;A.-L. GLOANEC .Fatigue properties of TiAl alloys[J].Intermetallics,2005(5):543-558.
[12] Nazmy M;Staubli M;Onofrio G.Effect of surface defects on the fatigue behavior of a cast TiAl alloy[A].Cambridge,UK:Cambridge University Press,2000:646.
[13] Sastry S M L;Lipsitt H A .Fatigue deformation of TiAl base alloys[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1977,8(02):299.
[14] 饶光斌,王小兰,常红,柯伟.利用声发射技术研究铸态Ti46Al8Nb合金疲劳寿命[C].中国第十一届声发射学术研讨会,2006:168-171.
[15] Trail SJ.;Bowen P. .EFFECTS OF STRESS CONCENTRATIONS ON THE FATIGUE LIFE OF A GAMMA-BASED TITANIUM ALUMINIDE[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):427-434.
[16] Kim Y W .Effects of microstructure on the tensile,fracture toughness and fatigue behaviour of gamma titanium aluminides[J].Journal of Materials Science and Technology,1994,10(02):79.
[17] 赵少汴;王忠保.抗疲劳设计:方法与数据[M].北京:机械工业出版社,1997:17,65,26.
[18] Umakoshi Y;Yasuda H Y;Nakano T .Plastic anisotropy and fatigue of TiAl PST crystals:A review[J].INTERMETALLICS,1996,4(z1):S65.
[19] Z.C. Liu;J.P. Lin;S.J. Li .Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys[J].Intermetallics,2002(7):653-659.
[20] 崔玉友,项宏福,贾清,杨锐.热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响[J].金属学报,2005(01):108-112.
[21] Stoloff N S;Duquette D J .Microstructural effects in the fatigue behavior of metals and alloys[J].Critical Rev Solid State Mater Sci,1973,4(1-4):615.
[22] Boettner R C;Stoloff N S;Davies R G .Effect of long-range order on fatigue[J].Aime Met Soc Trans,1966,236(01):131.
[23] Ham R K .A review of the mechanisms of fatigue[J].Canadian Metal Quarterly,1966,5(03):161.
[24] Mcevily A J;Johnston T L.The role of cross-slip in brittle fracture and fatigue[A].Sendai,Japan:The Japanese Society for Strength and Fracture of Materials,1966:515.
[25] Larsen J M;Worth B D;Balsone S J.Reliability issues affecting the implementation of gamma titanium aluminides in turbine engine applications[A].Birmingham,UK:The Institute of Materials,1996:113.
[26] Bowen P.;James AW.;Chave RA. .CYCLIC CRACK GROWTH IN TITANIUM ALUMINIDES[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):443-456.
[27] S.K. Jha;J.M. Larsen;A.H. Rosenberger .The Role of Competing Mechanisms in the Fatigue-Life Variability of a Titanium and Gamma-TiAl Alloy[J].JOM,2005(9):50-54.
[28] 丛韬,黄泽文.长期大气热暴露环境中含钨铌TiAl合金的组织和性能变化[J].航空材料学报,2008(03):5-11.
[29] 尹权,黄泽文.热暴露对Ti-44Al-4Nb-4Hf-1B合金显微结构和力学性能的影响[J].中国有色金属学报,2011(12):3050-3056.
[30] 薛红前,陶华,E.Bayraktar,C.Bathias.TiAl 合金高周弯曲疲劳研究[J].机械强度,2008(01):112-116.
[31] Bayraktar E;Bathias C;Xue H Q et al.On the giga cycle fatigue behavior of two-phase(α2 + γ)TiAl alloy[J].International Journal of Fatigue,2004,26(12):1263.
[32] Balsone SJ.;Maxwell DC.;Jones JW.;Larsen JM. .EFFECTS OF MICROSTRUCTURE AND TEMPERATURE ON FATIGUE CRACK GROWTH IN THE TIAL ALLOY TI-46.5AL-3NB-2CR-0.2W[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):457-464.
[33] Chan K S;Kim Y W .Rate and environmental effects on fracture of a two-phase TiAl-alloy[J].METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE,1993,24(01):113.
[34] Venkateswara Rao K T;Kim Y W;Muhlstein C L et al.Fatigue-crack growth and fracture resistance of a two-phase(γ + α2)TiAl alloy in duplex and lamellar microstructures[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,1995,192 193(01):474.
[35] Kruzic JJ.;Ritchie RO.;Campbell JP. .On the fatigue behavior of gamma-based titanium aluminides: Role of small cracks[J].Acta materialia,1999(3):801-816.
[36] K.S.Chan;B.Wittkowsky .Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1999(5):1203-1209.
[37] Mabru C;Hénaff G;Petit J .Environmental influence on fatigue crack propagation in TiAl alloys[J].INTERMETALLICS,1997,5(05):355.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%