欢迎登录材料期刊网

材料期刊网

高级检索

晶体相场方法被用于描述扩散时间尺度上的原子效应,在此基础上,Greenwood结合经典密度泛函理论,通过向自由能函数中引入一组两点相关函数,简化得到结构晶体相场方法.该方法可以用于研究多重组分合金材料的复杂微观结构.与经典密度泛函理论和一般晶体相场方法进行对比,详细论述了结构晶体相场模型的自由能函数以及两点相关函数.简要介绍了结构晶体相场方法在凝固过程、结构转变和复杂缺陷等方面的应用.

参考文献

[1] Echebarria B;Folch R;Karma A;Plapp M .Quantitative phase-field model of alloy solidification[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2004(6 Pt.1):1604-1-1604-22-0.
[2] Greenwood M;Haataja M;Provatas N .Crossover scaling of wavelength selection in directional solidification of binary alloys[J].Physical Review Letters,2004,93:246101.
[3] Kobayashi R.;Carter WC.;Warren JA. .A continuum model of grain boundaries[J].Physica, D. Nonlinear phenomena,2000(1/2):141-150.
[4] Warren J A;Kobayashi R;Lobkovsky A E et al.Extending phase field models of soliification to polycrystalline[J].Acta Materialia,2003,53:6035.
[5] Haataja M;Léonard F .Influence of mobile dislocation on phase separation in binary alloys[J].Physical Review B:Condensed Matter,2004,69:081201.
[6] Fan D;Chen L Q .Diffuse-interface description of grain boundary motion[J].Acta Metall,1996,45:611.
[7] Ramakrishnan T;Yussouff M .First-principles order-parameter theory of freezing[J].Physical Review B:Condensed Matter,1979,19:2775.
[8] Elder KR.;Katakowski M.;Haataja M.;Grant M. .Modeling elasticity in crystal growth - art. no. 245701[J].Physical review letters,2002(24):5701-0.
[9] K. R. Elder;Nikolas Provatas;Joel Berry;Peter Stefanovic;Martin Grant .Phase-field crystal modeling and classical density functional theory of freezing[J].Physical review, B. Condensed matter and materials physics,2007(6):064107.1-064107.14.
[10] Tegze G;Gránásy L;Tóth G I et al.Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase the phase-field crystal model[J].Physical Review Letters,2009,3:101.
[11] Yang Tao;Chen Zheng;Zhang Jing et al.Effect of boundary on spinodal decomposition using the phase field crystal method[J].Chinese Physics Letters,2012,29:078103.
[12] Stefanovic P;Haataja M;Provatas N et al.Phase field crystal study of deformation and plasticity in nanocrystalline materials[J].Physical Review E,2009,80:046107.
[13] Huang Z F;Elder K R .Mesoscopic and microscopic modeling of island formation in strained film epitaxy[J].Physical Review Letters,2008,101:158701.
[14] Archer A J;Robbins M J;Thiele U et al.Modeling the structure of liquids and crystals using one-and two-component modified phase-field crystal models[J].Physical Review E,2012,85:061408.
[15] Wu KA;Karma A .Phase-field crystal modeling of equilibrium bcc-liquid interfaces[J].Physical review, B. Condensed matter and materials physics,2007(18):184107-1-184107-10-0.
[16] Sami Majaniemi;Nikolas Provatas .Deriving surface-energy anisotropy for phenomenological phase-field models of solidification[J].Physical Review E,2009,79:011607.
[17] Huang Zhifeng .Scale-coupling and interface-pinning effects in the phase-field-crystal model[J].Physical Review E,2013,87:012401.
[18] Robert Spatschek;Alain Karma .Amplitude equations for polycrystalline materials with interaction between composition and stress[J].Physical review, B. Condensed matter and materials physics,2010(21):214201:1-214201:26.
[19] Spatschek R;Adland A;Karma A .Structural short-range force between solid-melt interfaces[J].Physical Review B:Condensed Matter,2013,87:024109.
[20] Michael Greenwood;Nikolas Provatas;J(o)rg Rottler .Free energy functionals for efficient phase field crystal modeling of structural phase transformations[J].Physical Review Letters,2010,105:045702.
[21] Michael Greenwood;J(o)rg Rottler;Nikolas Provatas .Phase field crystal methodology for modeling of structural transformations[J].Physical Review E,2011,83:031601.
[22] Tong Chaohui;Michael Greenwood;Nikolas Provatas .Quantitative phase-field modeling of solidification in binara alloys with nonlinear phase coexistence curves[J].Physical Review B:Condensed Matter,2008,77:06411.
[23] Nana Ofori-Opoku;Vahid Fallah;Michael Greenwood et al.A multi-component phase field crystal model for structural in metal alloys[J].Physical Review B:Condensed Matter,2013,87:134105.
[24] Greenwood M;Ofori-Opoku N;Rottler J et al.Modeling structural transformations in binary alloys with phase field crystals[J].Physical Review B:Condensed Matter,2011,84:064104.
[25] Nikolas Provatas;Ken Elder.Phase field methods in materials sciences and engineering[M].Wiley-VCH Verlag GmbH&Co KGaA,2010
[26] Ari Adland;Alain Karma;Robert Spatschek et al.Phase field crystal study of grain boundary premelting and shearing in bcc iron[J].Physical Review B:Condensed Matter,2013,87:024110.
[27] Huang Zhifeng;Elder K R;Nikolas Provatas .Phase field crystal dynamics for binary systems:Derivation from dynamical density functional theory,amplitude equatuin formalism,and application to alloy heterostructures[J].Physical Review E,2012,82:021605.
[28] K. R. Elder;Zhi-Feng Huang;Nikolas Provatas .Amplitude expansion of the binary phase-field-crystal model[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(1 Pt.1):011602:1-011602:11.
[29] Greenwood M;Sinclair C;Millitzer M .Phase field crystal model of solute drag[J].Acta Materialia,2012,60:5752.
[30] Rottler, J.;Greenwood, M.;Ziebarth, B. .Morphology of monolayer films on quasicrystalline surfaces from the phase field crystal model[J].Journal of Physics. Condensed Matter,2012(13):135002-1-135002-7.
[31] Fallah, V.;Stolle, J.;Ofori-Opoku, N.;Esmaeili, S.;Provatas, N. .Phase-field crystal modeling of early stage clustering and precipitation in metal alloys[J].Physical review, B. Condensed matter and materials physics,2012(13):134112-1-134112-7.
[32] Berry, J.;Provatas, N.;Rottler, J.;Sinclair, C.W. .Defect stability in phase-field crystal models: Stacking faults and partial dislocations[J].Physical review, B. Condensed matter and materials physics,2012(22):224112-1-224112-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%