{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对腐植酸与镓、铟的吸附作用作了实验研究, 提出了拟合实验数据的理想吸附等温方程, 并对作用机理予以推断.","authors":[{"authorName":"邹光中","id":"4dd6ddcf-6d88-49bd-8324-cdc8983e21b9","originalAuthorName":"邹光中"},{"authorName":"杜冬云","id":"11ca24a7-f180-441e-b86b-21347546a296","originalAuthorName":"杜冬云"},{"authorName":"刘建平","id":"d250622e-7667-4f3a-83bf-0c6e3a992ec0","originalAuthorName":"刘建平"}],"doi":"10.3969/j.issn.0258-7076.1999.05.018","fpage":"398","id":"5a85bba7-94a6-4fbb-9bdb-2ba903d9f835","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"4372a4b9-c968-4f6a-8d69-9e479454c006","keyword":"腐植酸","originalKeyword":"腐植酸"},{"id":"5e8da776-ea52-4090-afdc-e4dcc9e1b006","keyword":"镓","originalKeyword":"镓"},{"id":"c0b2307d-76df-462d-8a2c-bb9c14367934","keyword":"铟","originalKeyword":"铟"},{"id":"621a335b-79f6-45bb-a43b-8bb6115424fb","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"xyjs199905018","title":"腐植酸与镓、铟的吸附模型","volume":"23","year":"1999"},{"abstractinfo":"采用射频等离子体辅助分子束外延(RF-MBE)技术在蓝宝石衬底上,外延生长了发光波长位于407 nm的InGaN量子点结构,研究了InN成核层技术对其结构和光学特性的影响.材料生长过程中采用反射式高能电子衍射(RHEED)进行了在位检测,通过原子力显微镜(AFM),光致发光(PL)等测试手段表征了InGaN量子点材料的结构和光学特性.结果表明,相对于直接在GaN层上自组织生长InGaN量子点,通过InN成核层技术可以获得高密度、高质量的InGaN量子点结构,量子点尺寸分布更加均匀,主要集中在35~45 nm之间;量子点的密度更高,可以达到3.2×1010/cm2;InN 成核层上生长的InGaN量子点的PL发光峰强度为直接在GaN层上生长的InGaN量子点的2倍,发光峰的半高宽较窄,为10 nm.","authors":[{"authorName":"王保柱","id":"11f58de5-48ec-4ede-93ab-6061f9c8efbc","originalAuthorName":"王保柱"},{"authorName":"颜翠英","id":"8a5b4dbb-034f-4c5d-a914-738f02e6bcfa","originalAuthorName":"颜翠英"},{"authorName":"王晓亮","id":"06e98ac3-b041-4636-8ddd-960fa8367170","originalAuthorName":"王晓亮"}],"doi":"","fpage":"2030","id":"0d870089-131c-405b-83fe-07d439ca4a00","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"375e1dcf-4e4c-4b30-9ac4-e60263a14570","keyword":"铟镓氮","originalKeyword":"铟镓氮"},{"id":"932af348-941e-4912-9423-245ecf8dc97e","keyword":"量子点","originalKeyword":"量子点"},{"id":"5020dc06-86dd-427e-b028-63efb63e3bf7","keyword":"分子束外延","originalKeyword":"分子束外延"}],"language":"zh","publisherId":"xyjsclygc201111033","title":"分子束外延生长InGaN量子点及其结构和光学特性","volume":"40","year":"2011"},{"abstractinfo":"铜铟镓硒薄膜太阳能电池有着巨大的应用前景.介绍了铜铟镓硒太阳能电池的结构和特点,重点介绍了电沉积技术在铜铟镓硒太阳电池中的应用.目前单纯一步电沉积还不能有效控制CIGS薄膜化学计量比,需要化学刻蚀或者和物理气相沉积来调整原子比例,对于工业化生产柔性衬底上辊到辊顺序电沉积是重要的发展方向.","authors":[{"authorName":"白利锋","id":"167e2dbd-4d04-4101-9ccb-0d62e7eabf06","originalAuthorName":"白利锋"},{"authorName":"闫志巾","id":"b2560a77-df3c-4216-8aa5-d7e43017c5db","originalAuthorName":"闫志巾"}],"doi":"","fpage":"256","id":"7e11ff33-d957-45b6-9e00-89fee08079a8","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8572a35c-1476-4a92-8558-45daf7ab61c2","keyword":"薄膜太阳能电池","originalKeyword":"薄膜太阳能电池"},{"id":"12120afc-3913-4739-aa35-2ca025d52148","keyword":"铜铟镓硒","originalKeyword":"铜铟镓硒"},{"id":"d385029a-4d09-45ea-a246-d231c6097966","keyword":"电沉积","originalKeyword":"电沉积"}],"language":"zh","publisherId":"cldb2010z1075","title":"电沉积铜铟镓硒太阳能电池的研究进展","volume":"24","year":"2010"},{"abstractinfo":"采用硝酸和盐酸低温加热溶解铜铟镓硒靶材样品,以将样品中的硒氧化为亚硒酸(H2SeO3),在水浴或低温下用尿素驱除硝酸,然后以盐酸为介质,采用亚硫酸将亚硒酸还原为单质硒沉淀,实现了硒与样品中其他元素的分离,将沉淀经抽滤烘干称重,通过计算得到靶材中硒含量,据此建立了重量法测定铜铟镓硒靶材中硒含量的方法.实验确立了测定的最佳条件,并进行了共存元素的干扰试验.结果表明,铜铟镓硒靶材中的铜、铟、镓对硒的测定无影响.采用实验方法测定铜铟镓硒靶材内控样品,测定值与理论配制值基本一致,相对标准偏差(RSD,n=11)在0.050%~0.48%之间.3家不同实验室结果平均值的最大误差不超过0.20%,相对标准偏差均小于0.50%.回收率试验表明硒的回收率在99%~101%之间.","authors":[{"authorName":"刘守廷","id":"66f65969-1ec6-4c11-861b-1b74ce4933cc","originalAuthorName":"刘守廷"},{"authorName":"何京明","id":"ff743088-4603-4e4c-ba46-e086bb621fcc","originalAuthorName":"何京明"},{"authorName":"刘泽斌","id":"e1eb577b-67e3-47ab-8576-c4715ad61d76","originalAuthorName":"刘泽斌"},{"authorName":"吴婷","id":"38cb8bf0-80a7-48fc-ab25-08be9d479ae9","originalAuthorName":"吴婷"},{"authorName":"蒋天成","id":"5b59c733-afe0-4841-818f-c7df28578918","originalAuthorName":"蒋天成"},{"authorName":"叶苁佑","id":"e61cc5e8-bf59-48b1-bb51-381fc76be1e7","originalAuthorName":"叶苁佑"}],"doi":"10.13228/j.boyuan.issn1000-7571.009998","fpage":"59","id":"dddcde23-a545-4461-a292-088802a3eb46","issue":"5","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"7451cb8d-04ce-468b-afe4-362479b79e9f","keyword":"重量法","originalKeyword":"重量法"},{"id":"7aa92c54-8794-4a3a-95ef-0ea426803be9","keyword":"铜铟镓硒靶材","originalKeyword":"铜铟镓硒靶材"},{"id":"5a37fcfd-9a6c-44bc-a7a9-1622d62ece82","keyword":"硒","originalKeyword":"硒"}],"language":"zh","publisherId":"yjfx201705012","title":"重量法测定铜铟镓硒靶材中硒","volume":"37","year":"2017"},{"abstractinfo":"介绍了薄膜太阳能电池结构、性能特点以及目前在研究和生产过程中铜铟镓硒电池的制备方法;阐述了国内外在铜铟镓硒薄膜太阳能电池方面研究开发现状.最后探讨了铜铟镓硒太阳能电池存在的问题及今后研究方向.","authors":[{"authorName":"马光耀","id":"4e735bae-7909-4c69-aa44-c99d98e6538e","originalAuthorName":"马光耀"},{"authorName":"康志君","id":"7def978b-120b-4142-bde7-a198073f2e9d","originalAuthorName":"康志君"},{"authorName":"谢元锋","id":"4b181eae-edd9-45a0-9323-7fe77e576e73","originalAuthorName":"谢元锋"}],"doi":"","fpage":"46","id":"f68cc2be-65c2-4278-bf47-3522abd065f2","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"3092021a-1236-4d0f-a45f-28eea2540145","keyword":"铜铟镓硒","originalKeyword":"铜铟镓硒"},{"id":"8f2bbe07-a5dc-4d8f-8d37-2737df6db2cc","keyword":"太阳能电池","originalKeyword":"太阳能电池"},{"id":"49a6812f-a4b3-4f4a-93de-70683324b9e5","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"jsgncl200905013","title":"铜铟镓硒薄膜太阳能电池的研究进展及发展前景","volume":"16","year":"2009"},{"abstractinfo":"为从锌精矿氧压酸浸炼锌工艺的置换渣中提取锗镓铟元素,对二段浸出-萃取分离锗镓铟铜工艺进行研究,锌电积废液用于一段浸出,H2SO4-HF混酸用于一段浸出渣的二段浸出;一段浸出液分别采用二(2-乙基已基)磷酸(P204),C3-5氧肟酸+二(2-乙基已基)(P204)磷酸及5-壬基水杨醛肟(CP150)分别萃取铟,锗镓及铜;二段浸出液用C3-5氧肟酸萃取提锗,萃余液加入氟化钠沉淀氟硅酸钠.试验结果显示,一段浸出用酸度为3.1N的湿法炼锌电积废液,液固比4∶1,初始氧分压0.4 MPa,150℃,经3h的二级浸出后,浸出渣率约为15%,铟镓铜锌4个元素的浸出率都达到98%,而锗浸出率约为80%;一段浸出残渣用H2S04-HF混酸浸出,其氟/硅摩尔比4.2∶1.0,硫酸浓度为2N温度80℃,液固比3∶1,浸出时间为5h,一段浸出残渣中锗几乎完全浸出;一段浸出液在pH 2.0~2.2,30%二(2-乙基已基)磷酸萃取,部分铁与几乎所有的铟被萃取,用2N盐酸反萃,铟、铁的反萃率分别为98.28%和2.79%,可达到铟铁的分离;萃铟余液用3%的氧肟酸+10%二(2-乙基已基)磷酸-煤油协萃锗、镓,铁也发生共萃,锗、镓和铁的单级萃取率均在90%以上,采用次氯酸钠反萃,锗反萃率近100%,且Ge/Ga和Ge/Fe的反萃分离系数分别为10836和318.7.用3 mol·L-的硫酸,相比(W/O) 1∶2反萃镓,镓的一次反萃率达97.5%.二段浸出液采用10%C3-5氧肟酸-煤油萃取,相比(O/w)为1.2∶1.0,锗的单级萃取率达到98.31%.经30%次氯酸钠溶液反萃,锗的一次反萃率达到98.83%,萃余液加入氟化钠,氟硅化物的沉淀率为90%左右.沉硅滤液经补充氢氟酸后返回二段沉出,锗的浸出仍可达到较完全的浸出.该工艺无废液排放,并且通过与湿法炼锌流程的物料交换而变得简化.","authors":[{"authorName":"王继民","id":"c4a40f52-deac-4f06-a2fd-de2b03b463ef","originalAuthorName":"王继民"},{"authorName":"曹洪杨","id":"5f22cff8-8180-4487-94a0-f4bc5d5b8634","originalAuthorName":"曹洪杨"},{"authorName":"陈少纯","id":"43fd12a1-83d1-470c-9db9-baef7694c449","originalAuthorName":"陈少纯"},{"authorName":"徐毅","id":"53d3e5e5-c0d8-4f0d-9ac2-3882dd9496f2","originalAuthorName":"徐毅"},{"authorName":"张登凯","id":"c24fb854-74d1-469b-890d-b6dc2adc8b21","originalAuthorName":"张登凯"}],"doi":"10.13373/j.cnki.cjrm.2014.03.019","fpage":"471","id":"b8dc9741-6899-4497-9a3e-a7fc37092996","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"af088028-0092-4d90-a1ab-ede43e9e2a11","keyword":"锗镓提取","originalKeyword":"锗镓提取"},{"id":"53df0959-8691-4c27-9324-e8333069ef2b","keyword":"置换渣","originalKeyword":"置换渣"},{"id":"c05bcfed-e574-4b33-b475-467f5e3ab730","keyword":"二氧化硅基体中锗的溶出","originalKeyword":"二氧化硅基体中锗的溶出"},{"id":"583ecc92-8e64-4406-82eb-944c8ec55f82","keyword":"锗镓溶剂萃取","originalKeyword":"锗镓溶剂萃取"}],"language":"zh","publisherId":"xyjs201403019","title":"氧压酸浸炼锌流程中置换渣提取锗镓铟","volume":"38","year":"2014"},{"abstractinfo":"以醋酸锌水溶液为前驱体,分别以醋酸铵和硝酸铟为氮(N)源和铟(In)源,采用超声喷雾热解法在石英玻璃衬底上沉积了氮-铟(N-In)共掺杂ZnO薄膜.采用X射线衍射、场发射扫描电镜、霍尔效应、塞贝克效应、光致发光谱等分析方法,研究了N-In共掺杂对所得ZnO薄膜的晶体结构、电学和光学性能的影响规律.结果表明:通过氮-铟共掺杂,ZnO薄膜的电学和光学性能发生明显改变.优化工艺条件下,所得ZnO基薄膜结构均匀致密,电阻率为 6.75×10-3 Ω·cm,并且在室温光致发光谱中检测到很强的近带边紫外发光峰,表明薄膜具有较理想的化学计量比和较高的光学质量.","authors":[{"authorName":"边继明","id":"fd116218-775a-4183-8729-4c9bd12fa838","originalAuthorName":"边继明"},{"authorName":"李效民","id":"5655b170-d9f9-4540-99b5-e336a1097866","originalAuthorName":"李效民"},{"authorName":"张灿云","id":"0b0b16bf-366e-4eb0-b869-bd4e60b9f4fd","originalAuthorName":"张灿云"},{"authorName":"赵俊亮","id":"21203f9f-1c6e-40fe-8b08-558d9d922401","originalAuthorName":"赵俊亮"},{"authorName":"于伟东","id":"faf0f97f-170a-4ac7-8665-8f0c9fcc8367","originalAuthorName":"于伟东"},{"authorName":"高向东","id":"45b6ce17-6503-41c6-817d-3ce70fc1f74d","originalAuthorName":"高向东"}],"doi":"10.3969/j.issn.1007-2780.2005.03.006","fpage":"200","id":"17f31dbe-92f5-460e-b5e4-07ef2321b890","issue":"3","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"94e7be17-5452-4fdd-ad90-0323cb0e4df3","keyword":"ZnO薄膜","originalKeyword":"ZnO薄膜"},{"id":"c4bb49fe-1735-4037-93e2-9f12c36d44b1","keyword":"超声喷雾热分解","originalKeyword":"超声喷雾热分解"},{"id":"38a0a3b5-5ee6-4c69-b76a-a42c7284bcfd","keyword":"N-In 共掺杂","originalKeyword":"N-In 共掺杂"},{"id":"7311d843-d5d7-473e-9fc2-722af032fc12","keyword":"光致发光","originalKeyword":"光致发光"}],"language":"zh","publisherId":"yjyxs200503006","title":"氮-铟共掺杂ZnO薄膜的制备及表征","volume":"20","year":"2005"},{"abstractinfo":"采用低温三步共蒸发法在柔性聚酰亚胺衬底上制备了铜铟镓硒(CIGSe)薄膜,利用扫描电子显微镜和X射线衍射仪表征了CIGSe薄膜的结晶质量和晶体结构,探讨了低温沉积工艺中第二步和第三步衬底温度与薄膜晶粒尺寸、织构取向和结晶性能的关系.结果表明:随着第二步和第三步衬底温度同时升高,CIGSe薄膜的晶粒尺寸逐渐增大,镓的两相分离现象逐渐消失;保持第二步衬底温度不变,随着第三步衬底温度进一步升高,CIGSe薄膜的晶粒尺寸继续增大,薄膜的结晶质量显著改善;第二步和第三步衬底温度的变化对CIGSe薄膜的织构取向基本没有影响.","authors":[{"authorName":"曹章轶","id":"c2db8f2c-1ec5-4a64-b7e6-543ee3a7bdd4","originalAuthorName":"曹章轶"},{"authorName":"吴敏","id":"26bfe106-bb4c-4cc0-8228-39b346c0385c","originalAuthorName":"吴敏"},{"authorName":"张冬冬","id":"fac8a890-bed6-46dd-88ce-33624cd1b9f6","originalAuthorName":"张冬冬"}],"doi":"10.11973/jxgccl201508014","fpage":"65","id":"57152ed2-d63f-4236-8f90-c46d772bbfdc","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"fd31cd72-e196-4c02-b37b-bd69e9f91597","keyword":"铜铟镓硒薄膜","originalKeyword":"铜铟镓硒薄膜"},{"id":"1ebfd6e4-74dc-4a04-a21c-2b882d217112","keyword":"衬底温度","originalKeyword":"衬底温度"},{"id":"f2827419-7cef-483d-b403-411042f115d7","keyword":"低温生长","originalKeyword":"低温生长"},{"id":"952e644e-4d2e-4584-bb6d-55aa9f29f64a","keyword":"结晶质量","originalKeyword":"结晶质量"}],"language":"zh","publisherId":"jxgccl201508014","title":"衬底温度对低温制备铜铟镓硒薄膜结晶性能的影响","volume":"39","year":"2015"},{"abstractinfo":"采用周期换向脉冲电沉积法于Mo/玻璃及ITO/玻璃衬底上制备铜铟镓硒薄膜.Mo/玻璃或ITO/玻璃为工作电极,饱和甘汞(SCE)为参比电极,大面积铂片作为阳极构成三电极体系,以氯化铜,三氯化铟,三氯化镓和亚硒酸的水溶液为电解液,制备Cu-In-Ga-Se合金预制膜,随后在硒蒸气中进行硒化处理,得到了黄铜矿结构的GuInGaSe2(CIGS)薄膜.分别用SEM,XRD和UV -吸收分析了合金预制膜和CuInGaSe2薄膜的表面形貌、相组成及紫外-可见吸收特性.结果表明,周期换向脉冲电沉积法可以制备表面平整、均匀致密的Cu-In-Ga-Se合金薄膜;利用脉冲电压的占空比可以提高预制膜中的In元素的比例,且随着In含量的增加,CIGS薄膜的结晶性交好;适当延长硒化退火的时间,可以使薄膜晶粒大小均匀,减小内应力,使薄膜的光吸收率提高,以利于制备更高效率的CIGS薄膜太阳电池.","authors":[{"authorName":"曹洁","id":"6b059654-c80a-457b-a122-944eeb996758","originalAuthorName":"曹洁"},{"authorName":"曲胜春","id":"7bb67b4c-0d16-480e-abba-48c48a0d2f72","originalAuthorName":"曲胜春"},{"authorName":"刘孔","id":"241c4a43-9dbf-4ada-86af-83e5b33ed7fc","originalAuthorName":"刘孔"},{"authorName":"王占国","id":"76960015-b083-4c35-9104-ca975d698d2b","originalAuthorName":"王占国"}],"doi":"10.3969/j.issn.1007-4252.2011.02.013","fpage":"187","id":"74909b7c-27d2-44ca-9c16-c7b270602722","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"d7905ca5-050f-49ac-9d45-a872f11ca8fc","keyword":"周期换向脉冲","originalKeyword":"周期换向脉冲"},{"id":"1c8da68f-a49d-41ad-8f07-ef117b194ab1","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"c5b15e83-72a7-412f-95a1-0ffc08c92fbb","keyword":"CIGS薄膜","originalKeyword":"CIGS薄膜"},{"id":"a0c3dbe7-1d29-4659-81b3-0c9dfc6a2df9","keyword":"太阳电池","originalKeyword":"太阳电池"}],"language":"zh","publisherId":"gnclyqjxb201102013","title":"周期换向脉冲电沉积-硒化法制备铜铟镓硒薄膜","volume":"17","year":"2011"},{"abstractinfo":"阐述了两种真空法制备铜铟镓硒(CIGS)薄膜的工艺原理和工艺过程,比较和分析了两工艺的优缺点;介绍了溅射靶材的熔融铸造法和粉末冶金法,列举了靶材制备中所需的温度、压强、保温时间等参数.最后分析认为,用均匀细小的黄铜矿相CIGS粉末压制烧结成四元靶材,经溅射成膜后退火处理,可制备出优异的CIGS薄膜,具有更广阔的应用前景.","authors":[{"authorName":"张冷","id":"05fbb1b9-0d98-44f3-a820-10849ac91c79","originalAuthorName":"张冷"},{"authorName":"张维佳","id":"7e41eb16-f079-4bd5-8bd7-382f31e0732e","originalAuthorName":"张维佳"},{"authorName":"宋登元","id":"fd11c30b-954e-4493-a0b9-d470b9a1d985","originalAuthorName":"宋登元"},{"authorName":"张辉","id":"98deab2c-71e8-4d4c-a0d0-88120f6f5331","originalAuthorName":"张辉"},{"authorName":"张雷","id":"68acc3ab-fe10-42a8-a0aa-7c3c86147577","originalAuthorName":"张雷"},{"authorName":"马强","id":"cc9fd41a-3839-4324-a0a3-c280f278f4ce","originalAuthorName":"马强"},{"authorName":"刘嘉","id":"c2391391-28b9-4beb-aaff-4a78fe415af9","originalAuthorName":"刘嘉"},{"authorName":"吴然嵩","id":"fc5869c0-e0e9-4357-83dd-e5d52240bbe8","originalAuthorName":"吴然嵩"},{"authorName":"马晓波","id":"e95f1e1a-b23b-41f8-bf6c-8191de33f7cc","originalAuthorName":"马晓波"}],"doi":"10.3969/j.issn.1001-9731.2013.14.003","fpage":"1990","id":"04dd899f-3a3d-49a7-82dc-d0c64dd00e61","issue":"14","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"039de73b-bffb-4c40-90a0-156b018e45f4","keyword":"CIGS","originalKeyword":"CIGS"},{"id":"ce3bfdb1-8dea-4f15-8969-307ceac4a793","keyword":"真空","originalKeyword":"真空"},{"id":"80606c48-6c99-4d16-b252-f9e73722e835","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"220b7ba7-608c-461b-b7ea-f190711af325","keyword":"溅射靶","originalKeyword":"溅射靶"}],"language":"zh","publisherId":"gncl201314003","title":"铜铟镓硒薄膜的真空制备工艺及靶材研究现状","volume":"44","year":"2013"}],"totalpage":402,"totalrecord":4016}