欢迎登录材料期刊网

材料期刊网

高级检索

采用双悬臂梁试验和假设检验的方法,对比分析了两种不同成型工艺对复合材料I型层间断裂韧度的影响,并采用有限元模型对这一过程进行了模拟。研究表明:硅橡胶软模成型试验件的I型断裂韧度均值略高于金属硬模成型试验件;而两种工艺试验件的I型断裂韧度方差不存在显著差异,且两种工艺成型的试验件的裂纹扩展过程相似。在试验的基础上建立了有限元模型,对裂纹扩展过程进行了模拟,与试验结果吻合良好,可以有效地预测裂纹扩展过程。

In order to compare and analyse the effect of two different kinds of forming process on composite mode I interlaminar fracture toughness, the DCB specimens were tested by using hypothesis inspeetion method. A finite element model was also used to simulate the crack propagation process. The results demonstrate that the average of mode I interlaminar fracture toughness from silicon rubber flexible mold forming is a bit higher than that from metal rigid mold forming. Howevers the variance of mode I interlaminar fracture toughness from the two groups shows no significant difference. The crack propagation process of the two forming process is similar. The established finite element model, which is identical to the test results, can predict the process of the crack expansion effectively.

参考文献

[1] 韩学群 .复合材料层合板分层损伤数值模拟[D].武汉理工大学,2010.
[2] Shokrieh, M.M.;Heidari-Rarani, M.;Ayatollahi, M.R..Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach[J].Polymer Testing,20121(1):68-75.
[3] Gong, X.J.;Hurez, A.;Verchery, G..On the determination of delamination toughness by using multidirectional DCB specimens[J].Polymer Testing,20106(6):658-666.
[4] Nunziante Valoroso;Salvatore Sessa;Marcello Lepore.Identification of mode-I cohesive parameters for bonded interfaces based on DCB test[J].Engineering Fracture Mechanics,2013:56-79.
[5] Venkateswaran Shanmugam;Ravi Penmetsa;Eric Tuegel;Stephen Clay.Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models[J].Composite structures,2013Aug.(Aug.):38-60.
[6] 刘玲;黄争鸣;周烨欣;徐贵营.超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J].复合材料学报,2007(4):166-171.
[7] 关志东;刘德博;李星;黎增山.基于界面单元的复合材料层间损伤分析方法[J].复合材料学报,2012(2):130-134.
[8] 尹昌平;刘钧;刘卓峰;代晓青;曾竟成.用于RTM工艺的软模材料的工艺性能[J].纤维复合材料,2006(2):3-5.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%