欢迎登录材料期刊网

材料期刊网

高级检索

使用Gleeble 3800热模拟试验机模拟 F460钢单道次焊接条件下焊接粗晶热影响区的热循环过程,通过光镜(OM )、扫描电镜(SEM )分析热影响区的显微组织、确定临界事件,通过ABAQUS软件计算临界解理断裂应力σf ,进而系统分析不同焊接热输入 E下韧脆转变温度变化的内在机理。结果表明:随着 E的提高,焊接粗晶热影响区显微组织依次为少量板条马氏体和大量细密的板条贝氏体,板条贝氏体较多的板条/粒状贝氏体,粒状贝氏体较多的板条/粒状贝氏体,粗大的粒状贝氏体。原始奥氏体晶粒、贝氏体团的最大尺寸随着 E的提高而变大。在完全解理断裂的冲击断口上,寻找停留在缺口尖端附近的残留裂纹,通过对比残留裂纹长度、原始奥氏体晶粒大小、贝氏体团尺寸,发现不同 E下解理断裂的临界事件尺寸都是贝氏体团大小,而临界事件尺寸越小,韧脆转变温度越低。此外,通过有限元模拟缺口尖端的应力分布得到σf ,σf 越大冲击韧度越好,随着 E的提高σf 降低,故进一步说明随着 E的提高韧脆转变温度 Tk 上升的内在机理。

Coarse grain heat affected zone (HAZ) of F460 steel was simulated by a Gleeble 3800 ther‐mo‐mechanical simulator .The microstructure ,critical event of the HAZ formed at various heat inputs (E) were characterized and determined by optical microscopy (OM ) and scanning electronic microsco‐py (SEM ) ,and cleavage fracture stress σf was also calculated by ABAQUS software .Based on above systematic analysis ,the intrinsic mechanism of ductile‐brittle transition for F460 steel heat affected zones with different heat inputs were revealed .The results indicate that :with the improvement of heat input ,the microstructures in sequence are a minority of lath martensite and massive fine lath bainite ,more lath bainite with less granular bainite ,more granular bainite with less lath bainite , bulky of granular bainite;and the maximum size of the original austenite grain and bainite packet be‐comes bigger with the improvement of heat input .The size of bainite packet is critical event of the cleavage fracture for coarse grain heat affected zone specimens with various heat inputs by comparing the relationships among residual crack length ,original austenite grain size and bainite packet size . With the decreasing of the bainitic packet ,the ductile to brittle transition temperature decreases .In addition ,cleavage fracture stress σf is also calculated by ABAQUS software ,σf gradually decreases with the increase of the heat input ,which can explain the intrinsic mechanism of ductile to brittle transition temperature Tk with the change of the heat input .

参考文献

[1] I. Olivares;M. Alanis;R. Mendoza.Development of microalloyed steel for pipeline applications[J].Ironmaking & Steelmaking,20086(6):452-457.
[2] 缪成亮;尚成嘉;王学敏;张龙飞;Mani Subramanian.高Nb X80管线钢焊接热影响区显微组织与韧性[J].金属学报,2010(5):541-546.
[3] 赵玉珍;李擘;史耀武;田志凌.超级钢焊接接头粗晶区的精细结构[J].金属学报,2003(5):505-509.
[4] DONGSHENG LIU;BINGGUI CHENG;YUANYUAN CHEN.Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20131(1):440-455.
[5] DONGSHENG LIU;QINGLIANG LI;TOSHIHIKO EMI.Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20115(5):1349-1361.
[6] 赵琳;张旭东;陈武柱.800 MPa级低合金钢焊接热影响区韧性的研究[J].金属学报,2005(4):392-396.
[7] 贾坤宁;王海东;王华.热模拟微钙C-Mn钢焊接热影响区的组织及其对韧性的影响[J].金属热处理,2008(2):24-27.
[8] 王国珍;王玉良;轩福贞;涂善东;王正东.加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响[J].金属学报,2009(7):866-872.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%