欢迎登录材料期刊网

材料期刊网

高级检索

用分子动力学方法模拟了纳米多晶Cu/Ni薄膜在不同应变率下进行应变加载时的变形行为与力学性能.结果表明:Cu/Ni薄膜在较高的应变率加载情况下具有较高的屈服极限和应变率敏感性(m).应变率为108s1时Cu/Ni多层膜的界面上产生孔洞,而应变率为1010s-1时纳米多晶Cu薄膜出现碎裂.在较高的应变率加载条件下,Cu,Ni薄膜中FCC,HCP,OTHER原子团分数变化都很显著,而较小应变率时只有Cu薄膜的结构变化明显.模拟结果还表明,应变率增加有利于堆垛层错的形成,但应变率超过某一值时无序原子团增加会阻碍堆垛层错原子团的生长.

参考文献

[1] ZHU X Y,PAN F,LIU XJ,et al .Microstructureand mechanical properties of nanoscale Cu/Ni multilayers[J].Materials Science and Engineering A,2010,527:1243-1248.,2010.
[2] 王涛,卢子兴,杨振宇 .Cu/Ni多层纳米线力学性能尺寸效应的分子动力学模拟[J].计算力学学报,2011,28:147-151.WANG T,LUZX,YANG Z Y,et al.Size effects on the mechanical properties of Cu/Ni multi-layer nano-wires:molecular dynamics simulation[J].Chinese Journal of Computational Mechanics,2011,28(Suppl):147-151.,2011.
[3] CHELLALI M R,BALOGH Z,BOUCHIKHAOUI H .Triple junction transport and the impact of grain boundary width in nanocrystalline Cu[J].Nano Letter,2012,12(7):3448-3454.,2012.
[4] 程东,严志军,严立.Cu/Ni多层膜强化机理的分子动力学模拟[J].金属学报,2008(12):1461-1464.
[5] 梁浩,陈勇梅,胡文军,丰杰,谭云.不同应变率下MgAlZnY合金的拉伸性能与断口研究[J].材料工程,2012(01):66-70,76.
[6] LU L,LI S X,LU K .An abnormal strain rate effect on tensile behavior in nanocrystalline copper[J].Scripta Materialia,2001,45(10):1163-1169.,2001.
[7] SCHWAIGER R,MOSER B,CHOLLACOOP N,et al .Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J].Acta Materialia,2003,51(17):5159-5172.,2003.
[8] VO N Q,AVERBACK R S,BELLON P,et al .Yield strength in nanocrystalline Cu during high strain rate deformation[J].Scripta Materialia,2009,61(1):76-79.,2009.
[9] DONGARE A M,RAJENDRAN A M,MATTINA B L .Atomic scale simulations of ductile failure micromechanism in nanocrystalline Cu at high strain rates[J].Physical Review B,2009,80(10):4108-4118.,2009.
[10] DERLET P M,SWYGENHOVEN H V .Atomic positional disorder in fcc metal nanocrystalline grain boundaries[J].Physical Review B,2003,67(1):4202-4209.,2003.
[11] PLIMPTON S J .Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.,1995.
[12] MEHL M J,PAPACONSTANTOPOULOS D A .Structural stability and lattice defects in copper:Ab initio,tight-binding,and embedded-atom calculations[J].Physical Review B,2001,63(22):4106-4121.,2001.
[13] HOOVER W G .Canonical dynamics:equilibrium phase-space distributions[J].Physical Review A,1985,31(3):1695-1697.,1985.
[14] KELCHNER C L,PLIMPTON S J,HAMILTON J C .Dislocation nucleation and defect structure during surface indentation[J].Physical Review B,1998,58(17):11085-11088.,1998.
[15] WEI Y J,BOWER A F,GAO H J .Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding[J].Scripta Materialia,2008,56(8):1741-1752.,2008.
[16] KUMAR K S,SWYGENHOVEN H V,SURESH S .Mechanical behavior of nanocrystalline metals and alloys[J].Scripta Materialia,2003,51(19):5743-5774.,2003.
[17] WOLF D,YAMAKOV V,PHILLPOT S R,et al .Deformation of nanocrystalline materials by molecular-dynamics simulation:relationship to experiments[J].Acta Materialia,2005,53(1):1-40.,2005.
[18] JIA D,RAMESH K T,LU L,et al .Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates[J].Scripta Materialia,2001,45(5):613-620.,2001.
[19] BRINGA E M,CARO A,WANG Y,et al .Ultrahigh strength in nanocrystalline materials under shock loading[J].Science,2005,309(5742):1838-1841.,2005.
[20] BRINGA E M,TRAIVIRATANA S,MEYERS M A .Void initiation in fcc metals:Effect of loading orientation and nanocrystalline effects[J].Acta Materialia,2010,58(13):4458-4477.,2010.
[21] BRANDL C,DERLET P M,SWYGENHOVEN H V .Strain rates in molecular dynamics simulations of nanocrystalline metals[J].Philosophical Magazine,2009,89:3465-3475.,2009.
[22] ASARO R J,SURESH S .Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins[J].Acta Materialia,2005,53(12):3369-3382.,2005.
[23] CARREKER R P,HIBBARD W R .Tensile deformation of high purity copper as a function of temperature,strain rate,and grain size[J].Acta Materialia,1953,1(6):654-663.,1953.
[24] JIANG Z G,LIU X,LI G G,et al .Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating[J].Appl Phys Lett,2006,88(14):3115-3117.,2006.
[25] WEI Q .Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses[J].J Mater Sci,2007,42(5):1709-1727.,2007.
[26] TUCKER G J,TIWARI S,ZIMMERMAN J A,et al .Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics[J].J Mech Phys Solids,2012,60(3):471-486.,2012.
[27] TSUZUKI H,BRENICIO P S,RINO J P .Accelerating dislocations to transonic and supersonic speeds in anisotropic metals[J].Appl Phys Lett,2008,92(19):1909-1911.,2008.
[28] DONGARE A M,RAJENDRAN A M,LAMATTINA B,et al .Atomic scale studies of spall behavior in nanocrystalline Cu[J].J Appl Phys,2010,108(11):3518-3527.,2010.
[29] CHOI Y,PARK Y,HYUN S .Mechanical properties of nanocrystalline copper under thermal load[J].Physics Letters A,2012,376(5):758-762.,2012.
[30] MEYERS M A,MISHRA A,BENSON D J .The deformation physics of nanocrystalline metals:experiments analysis and computations[J].Nanostructured Materials,2006,58(4):41-48.,2006.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%