以正硅酸乙酯(TEOS)和钛酸丁酯(TBT)为共前驱体、乙醇为溶剂、乙酸和氨水为催化剂,采用快速溶胶-凝胶过程和超临界干燥制备得到SiO2/TiO2气凝胶小球.对SiO2/TiO2气凝胶小球进行SEM,TEM,XRD,FT-IR,TG-DTA和氮气吸附-脱附分析测试发现,SiO2/TiO2气凝胶小球粒径为1~8mm,平均粒径约为3.5mm,小球具有纳米多孔网络结构,比表面积高达914.5m2/g,TiO2颗粒均匀分布于气凝胶结构中,并在高温下保持锐钛矿晶型.
The silica-titania aerogel beads were synthesized through sol-gel reaction followed by super-critical drying ,in which TEOS and TBT as co-precursors ,EtOH as solvents ,HAC and NH3 · H2O as catalysts .The as-prepared aerogel beads were characterized by SEM ,TEM ,XRD ,FT-IR ,TG-DTA and nitrogen adsorption-desorption .The results indicate that the diameter distribution of beads are be-tween 1-8mm ,the average diameter of beads is 3 .5mm .The aerogel beads have nanoporous network structure with high specific surface area of 914 .5m2/g ,and the TiO2 particles are distributed in the aerogel uniformly ,which keep the anatase crystal under high temperature .
参考文献
[1] | A. Soleimani Dorcheh;M. H. Abbasi.Silica aerogel; synthesis, properties and characterization[J].Journal of Materials Processing Technology,20081-3(1-3):10-26. |
[2] | Hrubesh LW..Aerogel applications[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,19981(1):335-342. |
[3] | 张志华;王文琴;祖国庆;沈军;周斌;连娅.SiO2气凝胶材料的制备、性能及其低温保温隔热应用[J].航空材料学报,2015(1):87-96. |
[4] | 余煜玺;吴晓云;伞海生.常压干燥制备疏水性 Si O2-玻璃纤维复合气凝胶及表征[J].材料工程,2015(8):31-36. |
[5] | M. Alnaief;I. Smirnova.In situ production of spherical aerogel microparticles[J].The Journal of Supercritical Fluids,20113(3):1118-1123. |
[6] | Sun Ki Hong;Mi Young Yoon;Hae Jin Hwang.Fabrication of Spherical Silica Aerogel Granules from Water Glass by Ambient Pressure Drying[J].Journal of the American Ceramic Society,201110(10):3198-3201. |
[7] | Reim M;Reichenauer G;Korner W;Manara J;Arduini-Schuster M;Korder S;Beck A;Fricke J.Silica-aerogel granulate - Structural, optical and thermal properties[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,20040(0):358-363. |
[8] | 贾云砚;甘礼华;王玉栋;徐子颉;陈龙武.SiO2气凝胶小球的制备及表征[J].化工科技,2004(6):6-9. |
[9] | Sarawade, P.B.;Kim, J.-K.;Hilonga, A.;Quang, D.V.;Jeon, S.J.;Kim, H.T..Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: Effect of heat-treatment[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,201110(10):2156-2162. |
[10] | Pradip B. Sarawade;Jong-Kil Kim;Askwar Hilonga.Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process[J].Solid state sciences,20105(5):911-918. |
[11] | Chengjun Ren;Wei Qiu;Yaoqiang Chen.Physicochemical properties and photocatalytic activity of the TiO2/SiO2 prepared by precipitation method[J].Separation and Purification Technology,2013:264-272. |
[12] | S. V. Ingale;P. B. Wagh;A. K. Tripathi;V. S. Kamble;Ratanesh Kumar;Satish C. Gupta.Physico-chemical properties of silica aerogels prepared from TMOS/MTMS mixtures[J].Journal of porous materials,20115(5):567-572. |
[13] | Godlisten N. Shao;Askwar Hilonga;Sun Jeong Jeon.Influence of titania content on the mesostructure of titania-silica composites and their photocatalytic activity[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2013:123-130. |
[14] | YOUNG-GEUN KWON;SE-YOUNG CHOI;EUL-SON KANG.Ambient-dried silica aerogel doped with TiO_(2) powder for thermal insulation[J].Journal of Materials Science,200024(24):6075-6079. |
[15] | 赵斌;林琳;陈超;柴瑜超;何丹农.焙烧处理下二氧化钛/钛酸盐纳米材料晶型和形貌的变化规律研究[J].化学学报,2013(1):93-101. |
[16] | S. Rajesh Kumar;C. Suresh;Asha K. Vasudevan.Phaser transformation in sol-gel titania containing silica[J].Materials Letters,19993(3):161-166. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%