欢迎登录材料期刊网

材料期刊网

高级检索

针对差分法会造成时间序列信息损失的缺陷,首先对2000年1月至2013年4月黄金价格(月度)序列进行了小波分解和单支重构,其次对重构的近似分量和细节分量分别建立非参数自回归模型和AR模型,最后对每个分支进行了14步外推预测,将这些预测值求和得到了原始黄金价格序列自2013年5月至2014年6月的预测值。预测结果表明:2013年5-12月,黄金价格稳中有降,但降幅较小;进入2014年后,黄金价格则稳中上升,但上升幅度较小。

In view of the defects of difference causing information loss of time series ,firstly ,wavelet decomposition and single reconstruction are carried out for international gold monthly price series from 2000 January to 2013 April in the paper .Secondly ,nonparametric autoregressive model and AR model are respectively established for the approxima -tion and detail components;Finally,through summation of the prediction values ,the prediction values of original gold price series are obtained from May ,2013 to June ,2014 based on the 14 steps extrapolation prediction for each branch . The results show that during the period from May to December ,2013 ,gold prices are overall steady with a slight fall;entering 2014,gold prices keep undisturbed except by healthy growth ,but in a minor way.

参考文献

[1] 严威,尹伟,缪柏其,叶五一.应用罚函数方法构建广义指数因子预报模型--黄金价格预测的实证分析[J].中国科学院研究生院学报,2012(02):162-168.
[2] 张延利,张德生,刘常明,李金凤.基于BP神经网络的黄金价格非线性组合预测模型[J].黄金,2011(09):5-8.
[3] 许立平,罗明志.基于ARIMA模型的黄金价格短期分析预测[J].财经科学,2011(01):26-34.
[4] Hussein S F M;Shah M B N;Jalal M R A.Gold price prediction using radial basis function neural network[A].State of New Jersey:IEEE Press,2011
[5] 陆智萍,陶勤英.基于小波方法的时变长记忆参数的估计[J].应用概率统计,2012(05):499-510.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%