欢迎登录材料期刊网

材料期刊网

高级检索

从Pd纳米粒子溶胶出发,采用一步沉淀法和浸渍法分别制备了0.5%(质量分数)Pd/Ce0.6Zr0.4-xYxO2(x =0,0.03,0.05,0.1)负载型三效催化剂,考察了贵金属纳米粒子的负载方法以及Y的掺杂量对三效催化活性和水热稳定性的影响.结果表明,和浸渍法制备的催化剂相比,采用一步沉淀法制备的催化剂具有更高的三效催化活性.对于一步沉淀法制备的催化剂,Y的掺杂量对新鲜样品的三效催化活性影响不大,然而,900℃水热老化后,Y的掺杂量为0.05的Pd/Ce0.6Zr0.35Y0.05O2催化剂表现出最佳的催化活性,且其三效窗口也最为稳定.以上研究结果表明,一步沉淀法是一种从贵金属纳米溶胶出发制备纳米三效催化剂的有效方法,且在铈锫储氧材料中掺杂适量的Y元素可以进一步提高催化剂的三效催化活性和水热稳定性.

参考文献

[1] Westerholm R;Christensen A .Regulated and unregulated exhaust emissions from two three-way catalyst equipped gasoline fuelled vehicles[J].Atmospheric Environment,1996,30:3529.
[2] Iwakuni H;Miyoshi S;Takami A.Development of PGM single nano catalyst technology[A].Michigan,United States,2009
[3] Vidmar P.;Kaspar J.;Gubitosa G.;Graziani M.;Fornasiero P. .EFFECTS OF TRIVALENT DOPANTS ON THE REDOX PROPERTIES OF CE0.6ZR0.4O2 MIXED OXIDE[J].Journal of Catalysis,1997(1):160-168.
[4] Zhang G Z;Zhao Z;He H .Comparative study on the preparation,characterization and catalytic peeformances of 3DOM Ce-based materials for the combustion of diesel soot[J].Appl Catal B,2011,107:302.
[5] He H;Dai H X;Au C T .Pd-,Pt-,and Rh-loaded Ce0 6Zr0 35Y0 05O2 three-way catalysts:an investigation on performance and redox properties[J].Journal of Catalysis,2002,206:1.
[6] He H;Dai H X;Au C T .Defective structure,oxygen mobility,oxygen storage capacity,and redox properties of RE-based (RE =Ce,Pr) solid solutions[J].Catalysis Today,2004,90:245.
[7] Luo J Y;Meng M .One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO2 (M =Mn,Fe,Co,Ni,Cu) for efficient CO and C3H8 total oxidation[J].Appl Catal B,2009,87:92.
[8] Huang Y Q;Wang X D;Zhang T ."Ir-in-ceria":A highly selective catalyst for preferential CO oxidation[J].Journal of Catalysis,2008,255:144.
[9] Connie M.Y.Yeung;Kai Man K.Yu;Qi Jia Fu;David Thompsett;Michael I.Petch .Engineering Pt in Ceria for a Maximum Metal-Support Interaction in Catalysis[J].Journal of the American Chemical Society,2005(51):18010-18011.
[10] Golunski S;Rajaram R .Catalysis at lower temperatures[J].CATTECH,2002,6:30.
[11] He H;Dai H X;Zi X H .Apparatus and process for metal oxides and metal nanoparticles synthesis[P].US:8133411,2006.
[12] Liu L C;Wei T;He H .Size and morphology adjustment of PVP-stabilized silver and gold nanocrystals synthesized by hydrodynamic assisted self-assembly[J].J Phys Chem C,2009,113:8595.
[13] Liu L C;Wei T;Zi X H;He H Dai H X .Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid[J].Catalysis Today,2010,153:162.
[14] Liu L C;Guan X;He H .Supported bimetallic AuRh/γ-A12O3 nanocatalyst for the selective catalytic reduction of NO by propylene[J].Appl Catal B,2009,90:1.
[15] 刘立成,訾学红,戴洪兴,赵震,王新平,何洪.Rh-Au/γ-Al2O3三效纳米催化剂的制备与表征[J].催化学报,2010(07):781-787.
[16] 赵波,王秋艳,葛昌华,李光凤,周仁贤.Ce0.67Zr0.33O2材料的制备和表征及其负载单Pd三效催化剂的性能[J].催化学报,2009(05):407-413.
[17] Farrauto R J;Lampert J K;Hobson M C;Waterman E M .Thermal decomposition and reformation of PdO catalysts:support effects[J].Appl Catal B,1995,6:263.
[18] Hickey N;Fornasiero P;Ka(s)par J .Effects of the nature of the reducing agent on the transient redox behavior ofNM/Ce0 68Zr0 32O2(NM=Pt,Pd,and Rh)[J].Journal of Catalysis,2001,200:181.
[19] 曾尚红,张蕾,张晓红,潘慧,庄明,苏海全.CH4/CO2重整制合成气Ni/Cex Zr1-xO2催化剂性能研究[J].中国稀土学报,2011(04):422-427.
[20] 洪燕霞,梁红,李树华,王婷婷.钾元素掺杂对铈锆固溶体中氧物种的影响[J].中国稀土学报,2012(04):429-435.
[21] Tang, XL;Zhang, BC;Li, Y;Xu, YD;Xin, Q;Shen, WJ .Structural features and catalytic properties of Pt/CeO2 catalysts prepared by modified reduction-deposition techniques[J].Catalysis Letters,2004(3/4):163-169.
[22] ZHAO Ming,CHEN Shanhu,ZHANG Xiaoyu,GONG Maochu,CHEN Yaoqiang.Performance of Pd/CeO_2-ZrO_2-Al_2O_3 catalyst for motorcycle[J].稀土学报(英文版),2009(05):728-732.
[23] Kinnunen N M;Hirvi J T;Suvanto M;Pakkanen T A .Role of the interface between Pd and PdO in methane dissociation[J].J Phys Chem C,2011,115:19197.
[24] Yue B H;Zhou R X;Wang Y J;Zheng X M .Effect of rare earths (La,Pr,Nd,Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3 catalysts[J].Appl Catal A,2005,295:31.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%