如何控制和预测孔结构是炭气凝胶研究的重要课题.然而,由于耗时耗财,导致实验方法研究控制和预测孔结构成为难题.本文提出一种基于神经网络的炭气凝胶孔结构的预测与优化模型,并采用遗传算法设计和优化模型,对六种典型训练算法模型性能进行比较分析.利用该模型对孔径和吸附容量进行预测,两者的预测相关系数分别为0.992和0.981,预测均方根误差分别为0.077和0.054.经测试,该模型与实验研究的结果相符,并有效的应用于预测和控制炭气凝胶实验参数.
An intelligent simulation method for predicting and optimizing the pore structure of carbon aerogels is proposed by using an artificial neural network ( ANN) algorithm. The ANN model has been optimized based on an improved genetic algorithm from six typical training algorithms. The volumes and diameters of pores in the simulated samples are predicted by the optimized ANN model, which shows correlation coefficients R2 of 0. 992 and 0. 981 and root-mean-square prediction errors ( RMSPE) of 0. 077 and 0. 054 between the predicted and experimental values for the volumes and diameters of pores, respectively. The proposed model is expected to have practical applications in the pore structure control of carbon aerogels.
参考文献
[1] | 刘希邈;张睿;詹亮;龙东辉;乔文明;杨俊和;凌立成.炭气凝胶/活性炭复合电极在有机电解液体系双电层电容器中的阻抗[J].新型炭材料,2007(2):153-158. |
[2] | C. Moreno-Castilla;F.J. Maldonado-Hodar.Carbon aerogels for catalysis applications: An overview[J].Carbon: An International Journal Sponsored by the American Carbon Society,20053(3):455-465. |
[3] | Ying TY.;Yang KL.;Yiacoumi S.;Tsouris C..Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J].Journal of Colloid and Interface Science,20021(1):18-27. |
[4] | Seim Timung;Tapas K. Mandal.Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network[J].Applied Soft Computing,20134(4):1674-1685. |
[5] | Julien Eynard;Stephane Grieu;Monique Polit.Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption[J].Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation,20113(3):501-516. |
[6] | Kiranyaz S;Ince T;Yildirim.Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.[J].Neural Networks,200910(10):1448-1462. |
[7] | Plumb AP;Rowe RC;York P;Brown M.Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm.[J].European journal of pharmaceutical sciences,20054/5(4/5):395-405. |
[8] | 龙东辉;张洁;杨俊和;胡子君;李同起;成果;张睿;凌立成.苯酚-间甲酚-糠醛基炭气凝胶的制备及微结构控制[J].新型炭材料,2008(2):165-170. |
[9] | Vassilios D. Papadopoulos;Grigorios N. Beligiannis;Dimitra G. Hela.Combining experimental design and artificial neural networks for the determination of chlorinated compounds in fish using matrix solid-phase dispersion[J].Applied Soft Computing,20118(8):5155-5164. |
[10] | Khanmohammadi, M;Garmarudi, AB;Khoddami, N;Shabani, K;Khanlari, M.A novel technique based on diffuse reflectance near-infrared spectrometry and back-propagation artificial neural network for estimation of particle size in TiO2 nano particle samples[J].Microchemical Journal: Devoted to the Application of Microtechniques in all Branches of Science,20102(2):337-340. |
[11] | Payam Hanafizadeh;Ahad Zare Ravasan;Hesam Ramazanpour Khaki.An expert system for perfume selection using artificial neural network[J].Expert Systems with Application,201012(12):8879-8887. |
[12] | Tabitha L. James;Reza Barkhi;John D. Johnson.Platform impact on performance of parallel genetic algorithms: Design and implementation considerations[J].Engineering Applications of Artificial Intelligence: The International Journal of Intelligent Real-Time Automation,20068(8):843-856. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%