欢迎登录材料期刊网

材料期刊网

高级检索

采用密度泛函理论计算系统研究了单壁碳纳米管( Single-walled carbon nanotube,SWCNT)改变手性外延生长(手性指数从(n,m)变化到(n±△,m芎△),其中△=1和2)的热力学过程。结果表明,碳管手性变化后外延生长在热力学上都需要吸收能量,其所需吸收的能量随着管径的减小线性减小。在△=1的情况下,由于近扶手椅型碳管改变手性时,所引入的5~7元环对与管轴的夹角比近锯齿型碳管更大,导致5~7元环对的形成能增加,使得管径相同的近扶手椅型碳管比近锯齿型碳管在改变手性生长时需要吸收更多的能量。在△=2的情况下,发现只有当两个必须引入的5~7元环对相互毗邻,手性改变的外延生长所需能量最小,预测其为实验上最易于实现的碳管手性指数由( n,m)变化到( n±△,m芎△)的外延生长模式。这些理论研究结果有助于深入理解SWCNTs手性变化后外延生长的热力学行为,可为基于外延生长可控制备单一手性SWCNTs提供理论依据。

The energetic of the change in the chirality of single-wall carbon nanotubes ( SWCNTs) during epitaxial growth from (n, m) to (n±△, m △)(△=1, 2) was investigated by density functional theory calculations. The calculated energies for changing the chirality of different SWCNTs show a nearly linear decrease with decreasing tube diameter. In the case of△=1, more energy in-put is needed for near armchair ( nAC) SWCNTs to change their chiralities than those for near zigzag ( nZZ) SWCNTs with compa-rable diameters, due to the larger formation energies of pentagon-heptagon defects (5,7-defects) introduced in the nAC-SWCNTs. These larger formation energies for the nAC-SWCNTs come from the larger angles between the orientation of a 5,7-defect and the tube axis than those for nZZ-SWCNTs. The topological connection oftwo adjacent 5,7-defects, which is indispensable for changing the chirality during growth in the case of △=2, is found to be energetically most stable. The energies needed to change chirality in the case of△=2 are calculated to be less than twice those in the case of△=1 for SWCNTs with comparable diameters. These results may help us understand the change in chirality during the epitaxial growth of SWCNTs and guide the future synthesis of SWCNTs with a single-chirality .

参考文献

[1] Tans SJ.;Verschueren ARM.;Dekker C..Room-temperature transistor based on a single carbon nanotube[J].Nature,19986680(6680):49-52.
[2] Max M. Shulaker;Gage Hills;Nishant Patil;Hai Wei;Hong-Yu Chen;H.-S. Philip Wong;Subhasish Mitra.Carbon nanotube computer[J].Nature,2013Sep.26 TN.7468(Sep.26 TN.7468):526-C3.
[3] Wu ZC;Chen ZH;Du X;Logan JM;Sippel J;Nikolou M;Kamaras K.Transparent, conductive carbon nanotube films[J].Science,20045688(5688):1273-1276.
[4] Deheer WA;Chatelain A;Ugarte D.A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE[J].Science,19955239(5239):1179-1180.
[5] Cambré, S.;Wenseleers, W.;Goovaerts, E.;Resasco, D.E..Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy[J].ACS nano,201011(11):6717-6724.
[6] Kato, K.;Saito, S..Geometries, electronic structures and energetics of small-diameter single-walled carbon nanotubes[J].Physica, E. Low-dimensional systems & nanostructures,20113(3):669-672.
[7] Hong Wang;Yang Yuan;Li Wei.Catalysts for chirality selective synthesis of single-walled carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,2015:1-19.
[8] Zoican Loebick, C.;Podila, R.;Reppert, J.;Chudow, J.;Ren, F.;Haller, G.L.;Rao, A.M.;Pfefferle, L.D..Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes[J].Journal of the American Chemical Society,201032(32):11125-11131.
[9] Xiaolin Li;Xiaomin Tu;Sasa Zaric.Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection[J].Journal of the American Chemical Society,200751(51):15770-15771.
[10] Wang, H.;Wei, L.;Ren, F.;Wang, Q.;Pfefferle, L.D.;Haller, G.L.;Chen, Y..Chiral-selective CoSo_4/SiO_2 catalyst for (9,8) single-walled carbon nanotube growth[J].ACS nano,20131(1):614-626.
[11] Debosruti Dutta;Wei-Hung Chiang;R. Mohan Sankaran.Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces[J].Carbon: An International Journal Sponsored by the American Carbon Society,201210(10):3766-3773.
[12] Liu, B.;Ren, W.;Li, S.;Liu, C.;Cheng, H.-M..High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J].Chemical communications,201218(18):2409-2411.
[13] He, M.;Chernov, A.I.;Fedotov, P.V.;Obraztsova, E.D.;Sainio, J.;Rikkinen, E.;Jiang, H.;Zhu, Z.;Tian, Y.;Kauppinen, E.I.;Niemel?, M.;Krause, A.O.I..Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst[J].Journal of the American Chemical Society,201040(40):13994-13996.
[14] Wei L;Wang B;Goh TH;Li LJ;Yang YH;Chan-Park MB;Chen Y.Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200810(10):2771-2774.
[15] Wang, H.;Wang, B.;Quek, X.-Y.;Wei, L.;Zhao, J.;Li, L.-J.;Chan-Park, M.B.;Yang, Y.;Chen, Y..Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts[J].Journal of the American Chemical Society,201047(47):16747-16749.
[16] Wei-Hung Chiang;R. Mohan Sankaran.Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni_xFe_(1-x) nanoparticles[J].Nature materials,200911(11):882-886.
[17] Feng Yang;Xiao Wang;Daqi Zhang;Juan Yang;Da Luo;Ziwei Xu;Jiake Wei;Jian-Qiang Wang;Zhi Xu;Fei Peng;Xuemei Li;Ruoming Li;Yilun Li;Meihui Li;Xuedong Bai;Feng Ding;Yan Li.Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J].Nature,2014Jun.26 TN.7506(Jun.26 TN.7506):522-A1.
[18] 雷中兴;刘静;王建波;李轩科;汪厚植.催化剂结构与形态对碳纳米管生长的影响[J].新型炭材料,2003(4):271-276.
[19] 宋金玲;王丽;冯守爱;赵江红;朱珍平.Fe-Mo/Al_2O_3催化剂催化分解甲烷制备碳纳米管:温度对碳管结构的影响[J].新型炭材料,2009(4):307-313.
[20] Yao, YG;Feng, CQ;Zhang, J;Liu, ZF."Cloning" of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism[J].Nano letters,20094(4):1673-1677.
[21] Yao YG;Li QW;Zhang J;Liu R;Jiao LY;Zhu YT;Liu ZF.Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions[J].Nature materials,20074(4):283-286.
[22] Kresse G.;Furthmuller J..EFFICIENT ITERATIVE SCHEMES FOR AB INITIO TOTAL-ENERGY CALCULATIONS USING A PLANE-WAVE BASIS SET[J].Physical Review.B.Condensed Matter,199616(16):11169-11186.
[23] Kresse G.;Joubert D..From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review.B.Condensed Matter,19993(3):1758-1775.
[24] Dacheng Wei;Yunqi Liu.The Intramolecular Junctions of Carbon Nanotubes[J].Advanced Materials,200815(15):2815-2841.
[25] Rassin Grantab;Vivek B. Shenoy;Rodney S. Ruoff.Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene[J].Science,2010Nov.12 TN.6006(Nov.12 TN.6006):946-948.
[26] Pinshane Y. Huang;Carlos S. Ruiz-Vargas;Arend M. van der Zande;William S. Whitney;Mark P. Levendorf;Joshua W. Kevek;Shivank Garg;Jonathan S. Alden;Caleb J. Hustedt;Ye Zhu;Jiwoong Park;Paul L. McEuen;David A. Muller.Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J].Nature,2011Jan.20 TN.7330(Jan.20 TN.7330):389-392.
[27] Formation energy of Stone-Wales defects in carbon nanotubes[J].Applied physics letters,20036(6):1222-1224.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%