欢迎登录材料期刊网

材料期刊网

高级检索

本文研发了一种简便有效的在GaN半导体衬底上直接生长纳米金刚石膜的方法。研究发现,直接将GaN衬底暴露于氢等离子体中5 min即发生分解,且随着温度从560℃升高至680℃,这种分解反应愈加剧烈,很难在GaN衬底上直接形成结合力良好的纳米金刚石膜。通过在GaN衬底上镀制几纳米厚的硅过渡层,在富氢金刚石生长环境下,抑制了GaN衬底的分解,同时在GaN衬底上沉积了约2μm厚的纳米金刚石膜。硅过渡层厚度是决定纳米金刚石与GaN衬底结合力的主要因素。当硅过渡层厚度为10 nm时,纳米金刚石膜与GaN衬底呈现出大于10 N的结合力,可能与硅过渡层在金刚石生长过程中向SiC过渡层转变有关。

Gallium nitride ( GaN) has been widely used in electronic and optoelectronic devices because of its unique electrical properties. However, its low thermal conductivity and the high thermal boundary resistance at the interface between GaN and sub-strates such as Si and Al2 O3 prevent efficient heat dissipation from the heated regions, which limits the further development of GaN-based high power devices. Diamond, with the highest thermal conductivity, has been considered to be one of the most promising heat sink materials. However, it is hard to prepare a diamond film on a GaN substrate because there is a high thermal expansion co-efficient difference and also a large lattice mismatch between them. An approach to prepare a nano-diamond film on a GaN substrate by incorporating a Si buffer layer has been proposed. A GaN substrate decomposes significantly from 560 to 680℃ when exposed to ahydrogen plasma for 5 min and no adhesive nano-diamond film can be directly grown on it. This decomposition is significantly sup-pressed by the presence of a Si buffer layer and a nano-diamond film about 2 μm thick can be deposited on a GaN substrate by mi-crowave chemical vapor deposition using CH4 as the carbon source. With an optimum Si layer of 10 nm, the adhesive force between the nano-diamond film and the GaN substrate reaches 10N, which is ascribed to the complete conversion of the Si layer to a silicon carbidetransition layer during the deposition.

参考文献

[1] D. Zhang;J.M. Bian;F.W. Qin;J. Wang;L Pan;J.M. Zhao;Y. Zhao;Y.Z. Bai;G.T. Du.Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,201110(10):1582-1585.
[2] Toufik Sadi;Robert W. Kelsall;Neil J. Pilgrim.Investigation of Self-Heating Effects in Submicrometer GaN/AlGaN HEMTs Using an Electrothermal Monte Carlo Method[J].IEEE Transactions on Electron Devices,200612(12):2892-2900.
[3] Trew, R.J.;Green, D.S.;Shealy, J.B..AlGaN/GaN HFET reliability[J].IEEE microwave magazine,20094(4):116-127.
[4] M. Kuball;J. M. Hayes;M. J. Uren;T. Martin;J. C. H. Birbeck;R. S. Balmer;B. T. Hughes.Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J].IEEE Electron Device Letters,20021(1):7-9.
[5] Jonathan G. Felbinger;M. V. S. Chandra;Yunju Sun;Lester F. Eastman;John Wasserbauer;Firooz Faili;Dubravko Babic;Daniel Francis;Felix Ejeckam.Comparison of GaN HEMTs on Diamond and SiC Substrates[J].IEEE Electron Device Letters,200711(11):948-950.
[6] Y.-F. Wu;A. Saxler;M. Moore;R. P. Smith;S. Sheppard;P. M. Chavarkar;T. Wisleder;U. K. Mishra;P. Parikh.30-W/mm GaN HEMTs by Field Plate Optimization[J].IEEE Electron Device Letters,20043(3):117-119.
[7] N. Govindaraju;R.N. Singh.Processing of nanocrystalline diamond thin films for thermal management of wide-bandgap semiconductor power electronics[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,201114(14):1058-1072.
[8] Vivek Coyal;Anirudha V. Sumant;Desalegne Teweldebrhan;Alexander A. Balandin.Direct Low-Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High-Power Electronics[J].Advanced functional materials,20127(7):1525-1530.
[9] 张东;白亦真;秦福文;边继明;贾福超;吴占玲;赵纪军;姜辛.Preparation and Characteristics of GaN Films on Freestanding CVD Thick Diamond Films[J].中国物理快报(英文版),2010(01):260-263.
[10] Zou YS;Yang Y;Chong YM;Ye Q;He B;Yao ZQ;Zhang WJ;Lee ST;Cai Y;Chu HS.Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer[J].Crystal growth & design,20085(5):1770-1773.
[11] P.W. May;H.Y. Tsai;W.N. Wang.Deposition of CVD diamond onto GaN[J].Diamond and Related Materials,20064/8(4/8):526-530.
[12] D. Francis;F. Faili;D. Babic.Formation and characterization of 4-inch GaN-on-diamond substrates[J].Diamond and Related Materials,20102/3(2/3):229-233.
[13] Hageman PR.;Schermer JJ.;Larsen PK..GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20031/2(1/2):9-13.
[14] Yen-Hsien Yeh;Kuei-Ming Chen;Yin-Hao Wu;Ying-Chia Hsu;Tzu-Yi Yu;Wei-I Lee.Hydrogen etching of GaN and its application to produce free-standing GaN thick films[J].Journal of Crystal Growth,20111(1):16-19.
[15] M. Alomari;M. Dipalo;S. Rossi.Diamond overgrown InAlN/GaN HEMT[J].Diamond and Related Materials,20114(4):604-608.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%