欢迎登录材料期刊网

材料期刊网

高级检索

以葱叶为炭前驱体,在不添加任何活化剂的条件下,炭化活化同时进行,制备了孔径分布主要集中于0.6~1.2 nm和3~5nm之间的葱基多孔炭材料,并对其电容性能进行研究。分别采用扫描电子显微镜( SEM)、场发射扫描电子显微镜(FE-SEM)、能量弥散X射线光谱(EDX)、火焰原子吸收光谱(FAAS)、X射线衍射(XRD)、热重分析(TGA)和氮气吸脱附曲线等方法表征了葱基炭的形貌、成分、比表面积及孔径分布等性能;通过循环伏安( CV)、交流阻抗( EIS)、恒流充放电( GCD)等电化学方法考察了材料的比电容和循环寿命等电化学性能。结果表明,葱叶中本身含有的微量矿物质如钙、钾等在其炭化的过程中同时起到了活化的作用。研究了不同温度下(600~800℃)制备的多孔炭的性能,发现800℃条件下制得的样品性能最佳,以微孔为主,介孔辅之,孔径为0.6~1.2 nm 的微分孔隙体积达2.608 cm-3/g/nm,3~5 nm 的微分孔隙体积有0.144 cm-3 g/nm,BET比表面积为551.7 m2/g,质量比电容为158.6 F/g,有效面积电容可高达28.8μF/cm2。这表明孔径分布情况对多孔炭的电荷存储能力有很重要的影响,此法也为提高“有效面积电容”提供了思路。

Porous carbons were prepared by the simple carbonization of green onion leaves at temperatures from 600 to 800℃ and used as the electrode materials of supercapacitors. SEM, FESEM, EDX, AAS, XRD, TGA and nitrogen adsorption were used to characterize their morphology, pore structure and surface elemental composition. Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge were carried out to evaluate their specific capacitance, resistance and cycling life. Results showed that the initial mineral elements present in the leaves such as calcium ( Ca) and potassium ( K) play an activating role during the carbonization. All samples have a bimodal pore distribution of micropores ( mainly 0. 6-1. 2 nm) and mesopores (mainly 3-5 nm). The carbon prepared at 800 ℃ had the highest surface area of 551. 7 m2/g, a specific capacitance of 158. 6 F/g at 0. 2 A/g and an effective areal capacitance of 28. 8 μF/cm2 . The effective areal capacitance of the carbon prepared at 800 ℃ is higher than of most porous carbons reported in the literature, which is ascribed to its pore size distribution that favors ion access to its pores.

参考文献

[1] S.G. Kandalkar;D.S. Dhawale;Chang-Koo Kim;C.D. Lokhande.Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application[J].Synthetic Metals,201011/12(11/12):1299-1302.
[2] Largeot C;Portet C;Chmiola J;Taberna PL;Gogotsi Y;Simon P.Relation between the ion size and pore size for an electric double-layer capacitor[J].Journal of the American Chemical Society,20089(9):2730-2731.
[3] Li Li Zhang;X. S. Zhao.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,20099(9):2520-2531.
[4] Li, Yong-Feng;Liu, Yan-Zhen;Zhang, Wei-Ke;Guo, Chun-Yao;Chen, Cheng-Meng.Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J].Materials Letters,2015Oct.15(Oct.15):273-276.
[5] John R. Miller;Patrice Simon.Electrochemical Capacitors for Energy Management[J].Science,20085889(5889):651-652.
[6] Chemical Reviews Group.What Are Batteries,Fuel Cells,and Supercapacitors?[J].Chemical Reviews,200410(10):4245-4269.
[7] A. G. Pandolfe;A. F. Hollenkamp.Carbon properties and their role in supercapacitors[J].Journal of Power Sources,20061(1):11-27.
[8] Stoller MD;Park SJ;Zhu YW;An JH;Ruoff RS.Graphene-Based Ultracapacitors[J].Nano letters,200810(10):3498-3502.
[9] Yan Wang;Zhiqiang Shi;Yi Huang.Supercapacitor Devices Based on Graphene Materials[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200930(30):13103-13107.
[10] R. Kotz;M. Carlen.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,200015/16(15/16):2483-2498.
[11] Guoping Wang;Lei Zhang;Jiujun Zhang.A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,20122(2):797-828.
[12] Arico AS;Bruce P;Scrosati B;Tarascon JM;Van Schalkwijk W.Nanostructured materials for advanced energy conversion and storage devices[J].Nature materials,20055(5):366-377.
[13] Choi D;Kumta PN.Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors[J].Journal of the Electrochemical Society,200612(12):A2298-A2303.
[14] Hyuck Lee;Mi Suk Cho;In Hoi Kim;Jae Do Nam;Youngkwan Lee.RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J].Synthetic Metals,20109/10(9/10):1055-1059.
[15] Elmouwahidi, A.;Zapata-Benabithe, Z.;Carrasco-Marín, F.;Moreno-Castilla, C..Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,2012:185-190.
[16] Li, X.;Xing, W.;Zhuo, S.;Zhou, J.;Li, F.;Qiao, S.-Z.;Lu, G.-Q..Preparation of capacitor's electrode from sunflower seed shell[J].Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies,20112(2):1118-1123.
[17] Lihong Bao;Xiaodong Li.Towards Textile Energy Storage from Cotton T-Shirts[J].Advanced Materials,201224(24):3246-3252.
[18] Balathanigaimani MS;Shim WG;Lee MJ;Kim C;Lee JW;Moon H.Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J].Electrochemistry communications,20086(6):868-871.
[19] Encarnacion Raymundo-Pinero;Fabrice Leroux;Francois Beguin.A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer[J].Advanced Materials,200614(14):1877-1882.
[20] Thomas E. Rufford;Denisa Hulicova-Jurcakova;Erika Fiset;Zhonghua Zhu;Gao Qing Lu.Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte[J].Electrochemistry communications,20095(5):974-977.
[21] Rufford TE;Hulicova-Jurcakova D;Zhu ZH;Lu GQ.Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J].Electrochemistry communications,200810(10):1594-1597.
[22] Subramanian V;Luo C;Stephan AM;Nahm KS;Thomas S;Wei BQ.Supercapacitors from activated carbon derived from banana fibers[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200720(20):7527-7531.
[23] Qian Wang;Jun Yan;Yanbo Wang.Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,2013:209-218.
[24] Encarnacion Raymundo-Pinero;Martin Cadek;Frangois Beguin.Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds[J].Advanced functional materials,20097(7):1032-1039.
[25] Mandakini Biswal;Abhik Banerjee;Meenal Deo;Satishchandra Ogale.From dead leaves to high energy density supercapacitors[J].Energy & environmental science: EES,20134(4):1249-1259.
[26] Zhuangjun Fan;Dongping Qi;Ying Xiao;Jun Yan;Tong Wei.One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors[J].Materials Letters,2013Jun.15(Jun.15):29-32.
[27] Thomas Thomberg;Heisi Kurig;Alar Janes.Mesoporous carbide-derived carbons prepared from different chromium carbides[J].Microporous and mesoporous materials: The offical journal of the International Zeolite Association,20111/3(1/3):88-93.
[28] Yong-gang Wang;Yong-yao Xia.Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J].Electrochimica Acta,200616(16):3223-3227.
[29] E. Raymundo-Pinero;K. Kierzek;J. Machnikowski.Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J].Carbon: An International Journal Sponsored by the American Carbon Society,200612(12):2498-2507.
[30] Ania CO;Khomenko V;Raymundo-Pinero E;Parra JB;Beguin F.The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J].Advanced functional materials,200711(11):1828-1836.
[31] Tingting Qu;Wanjun Guo;Laihong Shen.Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin[J].Industrial & Engineering Chemistry Research,201118(18):10424-10433.
[32] Kyuya Nakagawa;Shin R.Mukai;Tetsuo Suzuki;Hajime Tamon.Gas adsorption on activated carbons from PET mixtures with a metal salt[J].Carbon: An International Journal Sponsored by the American Carbon Society,20034(4):823-831.
[33] Chan Kim;Jae-Wook Lee;Jong-Hyu Kim;Kap-Seung Yang.Feasibility of bamboo-based activated carbons for an electrochemical supercapacitor electrode[J].The Korean journal of chemical engineering,20064(4):592-594.
[34] 郝广平;米娟;李多;曲文慧;吴挺俊;李文翠;陆安慧.分等级孔道含氮多孔炭作超级电容器电极材料的研究[J].新型炭材料,2011(3):197-203.
[35] Chen, M.;Kang, X.;Wumaier, T.;Dou, J.;Gao, B.;Han, Y.;Xu, G.;Liu, Z.;Zhang, L..Preparation of activated carbon from cotton stalk and its application in supercapacitor[J].Journal of solid state electrochemistry,20134(4):1005-1012.
[36] Yunseok Jang;Jeongdai Jo;Young-Man Choi;Inyoung Kim;Seung-Hyun Lee;Daewon Kim;Seong Man Yoon.Activated carbon nanocomposite electrodes for high performance supercapacitors[J].Electrochimica Acta,2013:240-245.
[37] Guo YP.;Qi JR.;Jiang YQ.;Yang SF.;Wang ZC.;Xu HD..Performance of electrical double layer capacitors with porous carbons derived from rice husk[J].Materials Chemistry and Physics,20033(3):704-709.
[38] Yong-Jung Kim;Byoung-Ju Lee;Hiroaki Suezaki.Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors[J].Carbon: An International Journal Sponsored by the American Carbon Society,20068(8):1592-1595.
[39] James R. McDonough;Jang Wook Choi;Yuan Yang;Fabio La Mantia;Yuegang Zhang;Yi Cui.Carbon nanofiber supercapacitors with large areal capacitances[J].Applied physics letters,200924(24):243109-1-243109-3.
[40] Guangyuan Zheng;Liangbing Hu;Hui Wu;Xing Xie;Yi Cui.Paper supercapacitors by a solvent-free drawing methodf[J].Energy & environmental science: EES,20119(9):3368-3373.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%