欢迎登录材料期刊网

材料期刊网

高级检索

采用液相浸渍炭化技术,在压力为75 MPa下制备出4D-C/C复合材料,并进行高温热处理。研究静态和动态加载条件下,材料沿厚度方向的弯曲性能及断裂行为。结果表明,循环次数达到10×105次、频率为10 Hz时,材料的临界弯曲疲劳极限是静态弯曲强度的80%。静态弯曲加载情况下,C/C复合材料失效机制取决于试样底层炭纤维的取向。循环疲劳载荷作用下,其失效机制包括基体开裂、纤维-基体界面弱化及纤维断裂。复合材料在循环加载过程中界面结合强度降低,并释放内应力,故增强了纤维拔出以及复合材料的假塑性,疲劳加载后其剩余弯曲强度增加10%左右,而模量降低。疲劳载荷引起材料基体缺陷和裂纹数量的增加及纤维断裂,削弱了长度方向上的热膨胀,使材料热膨胀系数降低。

A four directional carbon/carbon (4D C/C) composite was fabricated by first using liquid phase impregnation carboni-zation ( LPIC) , followed by hot isostatic pressure impregnation and carbonization ( HIPIC) at 75 MPa, and finally high temperature treatment. The flexural properties and fracture behavior of the composite were investigated in the through-thickness direction under static and fatigue loading. The critical fatigue limit of the composite was 80% of the static flexural strength for one million loading cycles at 10 Hz. The failure mechanism of the composite under static flexural loading was dependent on the orientation of the carbon fibers in the tested specimen. Cyclic fatigue loading decreased the interfacial bonding strength and released the inherent stresses in the composite, which increased fiber pull-out, enhanced pseudo-ductility and increased the residual static flexural strength at the ex-pense of a decrease in the flexural modulus. The fatigue loading increased the number of noncritical matrix cracks, increased interfa-cial debonding, and caused the fracture of filaments in the surviving fatigued C/C composite. These features of the fatigued compos-ite internally accommodated expansion in long direction as the temperature was increased, which resulted in a decrease in its residual thermal expansion.

参考文献

[1] Fitzer E;Manocha L M.Carbon Reinforcements and Carbon/Carbon Composites[M].Berlin:Springer-Verlag,1998:310-342.
[2] M. Lacoste;A. Lacombe;P. Joyez .Carbon/Carbon extendible nozzles[J].Acta astronautica,2002(6):357-367.
[3] Savage G.Carbon-Carbon Composites[M].London:Chapman&Hall,1993:31-357.
[4] Buckley J D;Edie D D.Carbon/Carbon Materials and Compos-ites[M].New Jersey:Noyes Publications,1993:267-279.
[5] Wajed Zaman;Ke-zhi Li;Sumeera Ikram;Wei Li;Dong-sheng Zhang;Ling-jun Guo .Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2012(Aug.):134-142.
[6] Shameel Farhan,李克智,郭领军,高全明,兰逢涛.密度和纤维取向对炭/炭复合材料烧蚀性能的影响[J].新型炭材料,2010(03):161-167.
[7] Berdoyes M .Snecma propulsion solid advanced technology SRM nozzles. History and future. AIAA 2006-4596[R].
[8] L.DAGLI;Y.REMOND .Identification of the Non-linear Behaviour a 4D Carbon-Carbon Material Designed for Aeronautic Application[J].Applied composite materials,2002(1):1-15.
[9] Boury D;Munoz M;Albert A et al.Ariane 5 SRM nozzle evo-lution. AIAA 2002-4193[R].
[10] Tzeng SS;Lin W.-C. -- .Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(12):2011-2019.
[11] Lars Denk;Hiroshi Hatta;Akihiro Misawa;Satoshi Somiya .Shear fracture of C/C composites with variable stacking sequence[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(10):1505-1513.
[12] G.Chollon;O.Siron;J.Takahashi;H.Yamauchi .Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(13):2065-2075.
[13] Latit M. Manocha .High performance carbon-carbon composites[J].Sadhana: Academy Proceedings in Engineering Science,2003(1/2):349-358.
[14] Liu HL;Jin ZH;Hao ZB;Zeng XM .Improvement of the mechanical properties of two-dimensional carbon/carbon composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):316-318.
[15] R. Ermel;T. Beck;O. Voehringer .Mechanical properties and microstructure of carbon fibre reinforced carbon materials produced by chemical vapour infiltration[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):845-851.
[16] Aly-Hassan M S;Hatta H;Wakayama S et al.Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J].CARBON,2003,41:1069-1078.
[17] 郭领军,李贺军,李克智,王闯.粒状增强体种类对沥青基炭复合材料性能的影响[J].新型炭材料,2008(01):51-57.
[18] Hatta H;Kogo Y;Tanimoto T.Static and fatigue frac-ture behavior of C/C composites[A].,1995:368-373.
[19] Ozturk A R E;Moore R E .Tensile fatigue behavior of tightly woven carbon/carbon composites[J].COMPOSITES,1992,23:39-46.
[20] Ken Gota;Hiroshi Hatta;Daisuke Katsu;Terufumi Machida .Tensile fatigue of a laminated carbon-carbon composite at room temperature[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(6):1249-1255.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%