分别采用混酸、空气、硝酸和高锰酸钾对碳纳米管进行氧化处理,以在其表面引入官能团,进而研究了表面官能团对碳纳米管电化学性能的影响.X-射线光电子谱分析表明:混酸氧化处理引入的官能团主要为羰基和羧基;空气氧化使碳纳米管表面链接较多的羟基,但羰基和羧基的含量最少;而硝酸处理和高锰酸钾处理引入了中等数量的羰基和羧基.经四种处理方法所得碳纳米管具有相近的比表面积和孔结构.通过比较它们的比电容发现:羰基和羧基贡献了最多的准电容,尤其羰基含量与碳纳米管的电容量呈正比关系;而羟基主要增强了双层电容,并未引入明显的准法拉第容量.由于羰基和羧基比羟基具有更低的电荷传递电阻,有利于快速的法拉第反应,从而引入准电容.
Concentrated H2SO4 :HNO3 mixed acids, air, nitric acid and potassium permanganate were used to oxidize carbon nanotubes (CNTs) to introduce surface functional groups (SFGs) and the effects of the type and amount of SFGs on the electrochemical properties of CNT supercapacitors were investigated. XPS analysis shows that the mixed acid oxidation produces carbonyl ( CcO ) and the carboxyl ( O-C=O ) groups, the air oxidation results in hydroxyl and the smallest amount of carbonyl and carboxyl groups, and both the nitric acid and potassium permanganate treatments result in a moderate amount of carbonyl and carboxyl groups. It was found that the specific surface area and pore structures of the four samples are similar and carbonyl and carboxyl groups contribute the most to pseudo-capacitance through a Faradic reaction. In particular, the carbonyl group has a proportional relationship to the capacitance of CNTs. However, the hydroxyl group does not lead to an obvious increase of pseudo-capacitance, but can increase the electric double layer capacitance. The carbonyl and the carboxyl groups are advantageous for fast Faradic reactions to introduce pseudo-capacitance, owing to their lower charge transfer resistance than that of the hydroxyl group.
参考文献
[1] | Liu T;Sreekumar T V;Kumar S et al.SWNT/PAN composite film-based supercapacitors[J].CARBO,2003,41:2427-2451. |
[2] | Park JH;Choi JH;Moon JS;Kushinov DG;Yoo JB;Park CY;Nam JW;Lee CK;Park JH;Choe DH .Simple approach for the fabrication of carbon nanotube field emitter using conducting paste[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(4):698-703. |
[3] | I. Sayago;E. Ten-ado;E. Lafuente .Hydrogen sensors based on carbon nanotubes thin films[J].Synthetic Metals,2005(1):15-19. |
[4] | Qing Zhao;Mark D. Frogley;H. Daniel Wagner .Direction-sensitive stress measurements with carbon nanotube sensors[J].Polymers for advanced technologies,2002(10/12):759-764. |
[5] | Somani PR;Somani SP;Flahaut E;Umeno M .Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes[J].Nanotechnology,2007(18):85708-1-85708-5-0. |
[6] | Frackowiak E;Jurewicz E;Delpeux S et al.Nanotubular materials for supercapacitors[J].Journal of Power Sources,2001,97-98:822-825. |
[7] | R.Z. Ma;J. Liang;B.Q. Wei .Study of electfochemical capacitors utilizing carbon nanotube electrodes[J].Journal of Power Sources,1999(1):126-129. |
[8] | Emmenegger C;Mauron P;Sudan P et al.Investigation of electrochemical double-layer capacitors electrodes based on carbon nanotubes and activated carbon materials[J].Journal of Power Sources,2003,124:321-329. |
[9] | Min-Kang Seo;Soo-Jin Park .Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors[J].Materials Science & Engineering. B, Solid-State Materials for Advanced Technology,2009(2):106-111. |
[10] | M. J. Bleda-Martinez;J. A. Macia-Agullo;D. Lozano-Castello .Role of surface chemistry on electric double layer capacitance of carbon materials[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(13):2677-2684. |
[11] | V. Ruiz;C. Blanco;E. Raymundo-Pinero;V. Khomenko;F. Beguin;R. Santamaria .Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors[J].Electrochimica Acta,2007(15):4969-4973. |
[12] | 王大伟,李峰,刘敏,成会明.硝酸氧化改性SBA-15 模板合成的中孔炭电容性能研究[J].新型炭材料,2007(04):307-314. |
[13] | LiuJ;RinzlerA G;Dai H J et al.Fullerene pipes[J].Science,1998,280:1253-1256. |
[14] | Dujardin E.;Krishnan A.;Treacy MMJ.;Ebbesen TW. .Purification of single-shell nanotubes[J].Advanced Materials,1998(8):611-613. |
[15] | Hidefumi Hiur;Thomas W. Ebbesen;Katsumi Tanigaki .Opening and Purification of Carbon Nanotubes in High Yields[J].Advanced Materials,1995(3):275-276. |
[16] | Ajayan P M;Ebbesen T W .Opening carbon nanotubes with oxygen and implications for filling[J].Nature,1993,362:522-525. |
[17] | Tsang S C;Chen Y K;Harris P J F et al.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372:159-162. |
[18] | Kosaka M;Ebbesen T W;Hiura H et al.Electron-spin-resonance of carbon nanotubes[J].Chemical Physics Letters,1994,225:161-164. |
[19] | HAgo;KuglerT;CacialliF et al.Work functions and sufface functional groups of multiwall carbon nanotubes[J].Journal of Physical Chemistry B,1999,103:8116-8121. |
[20] | Jung A;Graupner R;Ley L;Hirsch A .Quantitative determination of oxidative defects on single walled carbon nanotubes[J].Physica status solidi, B. Basic research,2006(13):3217-3220. |
[21] | Chien-To Hsieh;Hsisheng Teng .Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(5):667-674. |
[22] | Chien-Te Hsieh;Wei-Yu Chen;Yu-Shun Cheng .Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites[J].Electrochimica Acta,2010(19):5294-5300. |
[23] | 侯鹏翔 .多壁纳米碳管的大量制备、提纯及其储氢性能研究[D].中国科学院金属研究所,2003. |
[24] | Ciaz J;Paolicelli G;Ferrer S et al.Separation of the sp3 and sp2 components in the Cls photoemission spectra of amorphous carbon films[J].Physical Review B,1996,53:8064-8069. |
[25] | Oda H;Yamashit A;Minour S et al.Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor[J].Journal of Power Sources,2006,158:1510-1516. |
[26] | Yau Ren Nian;Hsisheng Teng .Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2003(0):119-127. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%