机磨热加工法是批量制取碳纳米管(CNTs)的方法之一.在氩气氛中研磨鳞片石墨为无定形的纳米炭粉,而后在1350℃~1380℃下退火获得碳纳米管(CNTs).用XRD,SEM,FE-TEM,HRTEM和拉曼光谱对纳米炭粉及CNTs进行表征.发现:CNTs具有不同的形貌,长度约几毫米,直径为30nm~70nm.螺旋状多壁碳纳米管有高的长径比(~1000)和高的结晶度(ID/IG:~0.03).
A mechanothermal method is one of the methods used for the large scale production of carbon nanotubes (CNTs). The flake graphite was milled under argon atmosphere to nanometer sized carbon in amorphous state, and was then annealed at high temperature(1350-1380℃) to yield CNTs. The milled graphites and CNTs were characterized by XRD, SEM, FE-TEM, HRTEM, and Raman spectroscopy. It is found that the CNTs have a length of several millimeters and a diameter of 30-70 nm with different morphologies. The spring-like MWCNTs have a high aspect ratio (~1000) and a high crystallinity (ID/IG~0.03 ).
参考文献
[1] | Saito R;Dresselhaus G;Dresselhaus M S.Physical Properties of Carbon Nanotubes[M].London,UK:Imperial College Press,1998 |
[2] | Sinnott SB.;Andrews R. .Carbon nanotubes: Synthesis, properties, and applications [Review][J].Critical Reviews in Solid State and Materials Sciences,2001(3):145-249. |
[3] | Sano N .Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene[J].Materials Chemistry and Physics,2004(2/3):235-238. |
[4] | Hu Z D;Hu Y F;Cben Q et al.Full determination of zero field splitting tenor of the excited triplet state of C60 derivatives of arbitrary symmetry from high field TREPR in liquid crystal[J].Journal of Physical Chemistry B,2006,110:8263-3224. |
[5] | Cui S;Scharff P;Siegmund C et al.Investigation on preparation of multiwalled carbon nanombes by DC arc discharge under N2 atmosphere[J].CARBON,2004,42(5-6):931-939. |
[6] | S.N. Bondi;W.J. Lackey;R.W. Johnson .Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(8):1393-1403. |
[7] | Jeong H J;Kim K K;Jeong S Y et al.High-yield catalytic synthesis of thin multiwalled carbon nanotubes[J].J PlaysChem,2004,108(B):17695-17697. |
[8] | Lyu S C;Liu B C;Lee S H et al.Large-scale synthesis of high-quality of single-walled carbon nanotubes by catalytic decomposition of ethylene[J].Journal of Physical Chemistry,2004,108(B):1613-1616. |
[9] | Hafner JH.;Azamian BR.;Nikolaev P.;Rinzler AG. Colbert DT.;Smith KA.;Smalley RE.;Bronikowski MJ. .Catalytic growth of single-wall carbon nanotubes from metal particles[J].Chemical Physics Letters,1998(1/2):195-202. |
[10] | Cassell A M;Raymakers J A;Kong J et al.Large scale CVD synthesis of single-walled carbon nanotubes[J].Journal of Physical Chemistry,1999,103(B):6484-6492. |
[11] | Flahaut E;Govindaraj A;Peigney A et al.Synthese par voie catalytiqueet caract risation de composites nanotubes de carbone-m tal-oxide[J].Chemical Physics Letters,1999,300:236-243. |
[12] | Colomer J.-F. .Large-scale synthesis of single-wall carbn nanotubes by catalytic chemical vapor deposition (CCVD)method[J].Chemical Physics Letters,2000(1/2):83-89. |
[13] | Tang S;Zhong Z;Xiong Z et al.Single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts[J].Chemical Physics Letters,2001,350:19-26. |
[14] | Li Q W;Yan H;Cheng Y et al.A scalable CVD synthesis of high-purity single-walled carbon,nanotubes with porous MgO as support material[J].Journal of Materials Chemistry,2002,12:1179. |
[15] | Hata K;Futaba DN;Mizuno K;Namai T;Yumura M;Iijima S .Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes[J].Science,2004(5700):1362-1364. |
[16] | Maruyama S.;Kojima R.;Miyauchi Y.;Chiashi S.;Kohno M. .Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J].Chemical Physics Letters,2002(3-4):229-234. |
[17] | Shaijumon MM.;Ramaprabhu S. .Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies[J].Chemical Physics Letters,2003(5-6):513-520. |
[18] | Ago H;Nakamura K;Imamura S;Tsuji M .Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO[J].Chemical Physics Letters,2004(4-6):308-313. |
[19] | Emmanuel Flahaut;Revathi Bacsa;Alain Peigney;Christophe Laurent .Gram-scale CCVD synthesis of double-walled carbon nanotubes[J].Chemical communications,2003(12):1442-1443. |
[20] | Seung Chul Lyu;Bao Chun Liu;Su Hwan Lee;Chong Yun Park;Hee Kwang Kang;Cheol-Woong Yang;Cheol Jin Lee .Large-Scale Synthesis of High-Quality Double-Walled Carbon nanotubes by catalytic Decomposition of n-Hexane[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2004(7):2192-2194. |
[21] | Ramesh P;Okazaki T;Taniguchi R;Kimura J;Sugai T;Sato K;Ozeki Y;Shinohara H .Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(3):1141-1147. |
[22] | Y.Chen;M.J.Conway;J.D.Fitzgerald .Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing[J].Applied physics, A. Materials science & processing,2003(4):633-636. |
[23] | Frank Ko;Yury Gogotsi;Ashraf Ali;Nevin Naguib;Haihui Ye;Guoliang Yang;Christopher Li;Peter Willis .Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns[J].Advanced Materials,2003(14):1161-1165. |
[24] | Sen R;Zhao B;Perea D et al.Preparation of single-walled carbon nanotube reinforced polystyrene and poly-urethane nanofbers and membranes by electrospinning[J].Nano Left,2004,4(03):459-464. |
[25] | S. Manafi;H. Nadali;H.R. Irani .Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method[J].Materials Letters,2008(26):4175-4176. |
[26] | Ali Eftekhari;Sahebali Manafi;Fathollah Moztarzadeh .Catalytic Chemical Vapor Deposition Preparation of Multi-wall Carbon Nanotubes with Cone-like Heads[J].Chemistry Letters,2006(1):138-139. |
[27] | Wang W;Kunwar S;Huang J Y et al.Low temperature olvothermal synthesis of multiwall carbon nanotubes[J].Nanotechnology,2005,16:21-23. |
[28] | Williamson G K;Hall W H.X-ray line broadening from filed Al and W[J].Acta Metallurgica Sinica,1953(01):22-31. |
[29] | Dyke C A;Tour J M .Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization[J].Chemistry-A European Journal,2004,10:812-817. |
[30] | Saito R;Jorio A;Antonio G et al.First and second-order resonance Raman process in graphite and single wall carbon naaotubes[J].Japanese Journal of Applied Physics,2002,41:4878-4882. |
[31] | Maher S A .Raman spectroscopy and molecular simulation investigations of adsorption on the surface of single-walled carbon nanotubes and nanospheres[J].Journal of Raman Spectroscopy,2007,6(38):721-727. |
[32] | Takahiro Maruyama;Tomoyuki Shiraiwa;Naomi Fujita;Yasuyuki Kawamura;Shigeya Naritsuka;Michiko Kusunoki .Characterization of Small-Diameter Carbon Nanotubes and Carbon Nanocaps on SiC(0001) Using Raman Spectroscopy[J].Japanese journal of applied physics,2006(9a):7231-7233. |
[33] | Cancado LG;Takai K;Enoki T;Endo M;Kim YA;Mizusaki H;Speziali NL;Jorio A;Pimenta MA .Measuring the degree of stacking order in graphite by Raman spectroscopy[J].Carbon: An International Journal Sponsored by the American Carbon Society,2008(2):272-275. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%