与低温(<100oC)质子交换膜燃料电池相比,磷酸掺杂PBI膜燃料电池可工作于100–200 oC,工作温度的提高有利于提高电极反应动力学速率、增加Pt催化剂对CO等毒物的耐受性,以及简化电池水管理等.然而,磷酸在Pt催化剂表面吸附较强,这将造成Pt一定程度的毒化.基于“第三体效应”,即在Pt表面预吸附某些小分子,可在一定程度上抑制磷酸吸附,然而预吸附分子同时也将占据Pt表面部分活性位点,因而Pt的催化性能最终由两个因素决定:磷酸抑制程度和预吸附分子在Pt表面的覆盖度.
本文系统考察了Pt表面预吸附分子覆盖度和预吸附分子链长对其催化氧还原反应(ORR)活性的影响.首先,通过控制预吸附了胺类分子的Pt电极的电位,得到表面具有不同覆盖度的Pt电极,考察了0.1 mol/L H3PO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律;为分离磷酸吸附和修饰分子吸附本身对Pt催化活性的影响,对比了0.1 mol/L HClO4电解液中Pt电极对ORR的催化活性随预吸附分子覆盖度的变化规律.进一步对比研究了不同链长胺分子——正丁胺(BA)、正辛胺(OA)及十二胺(DA)等作为修饰分子对Pt/C催化剂电催化ORR活性的影响.结果表明,随修饰分子在Pt表面覆盖度提高,在0.1 mol/L HClO4溶液中,由于预吸附分子占据Pt部分活性位,修饰后光滑Pt电极表面的本征活性单调下降;而在0.1 mol/L H3PO4中,修饰后光滑Pt电极表面的ORR活性呈现先升高后降低的趋势,当预吸附分子覆盖度约为20%时,其ORR活性最高,为未修饰的光滑Pt电极表面的1.67倍.这表明预吸附分子有效抑制了磷酸的吸附,且当预吸附分子覆盖度约为20%时,预吸附分子对Pt表面的占据与其抑制磷酸吸附的作用达到最佳平衡点.然而,当修饰分子BA, OA和DA在Pt表面覆盖度分别为38.6%,26.1%和26.1%时, Pt/C在0.1 mol/L H3PO4中的ORR催化活性接近,分别为未经修饰Pt/C电催化剂的1.7,1.8和2.0倍,这表明预吸附分子链长对ORR催化活性影响较小,表面预吸附分子抑制磷酸吸附的策略对Pt/C催化剂也同样适用.同时, Pt/C电极经BA, OA和DA修饰后,其在0.1 mol/L HClO4中的比表面活性分别为未经修饰Pt/C电催化剂的1.0,1.1和1.3倍,与修饰后光滑Pt电极表面本征ORR活性变化规律不一致.然而,与Pt在HClO4电解质中的ORR活性相比, ORR的半波电位仍有大约123 mV的差距,今后还需继续从催化剂的角度,如调控Pt表面的吸附特性,或从创新电解质的角度,如有机磷酸电解质等出发解决磷酸毒化的问题.
Nafion‐membrane‐based proton exchange fuel cells (PEMFCs) typically operate at below 100 °C. However, H3PO4‐doped polybenzimidazole (PBI)‐based PEMFCs can operate at 100?200 °C. This is advantageous because of accelerated reaction rates and enhanced tolerance to poisons such as CO and SO2, which can arise from reformed gas or the atmosphere. However, the strong adsorption of phosphoric anions on the Pt surface dramatically decreases the electrocatalytic activity. This study exploits the“third‐body effect”, in which a small amount of organic molecules are pre‐adsorbed on the Pt surface to inhibit the adsorption of phosphoric anions. Pre‐adsorbate species inhibit the ad‐sorption of phosphoric anions, but can also partially occlude active sites. Thus, the optimum pre‐adsorbate coverage is studied by correlating the oxygen reduction reaction (ORR) activity of Pt with pre‐adsorbate coverage on the Pt surface. The influence of the pre‐adsorbate molecule length is investigated using the organic amines, butylamine, octylamine, and dodecylamine, in both 0.1 mol/L HClO4 and 0.1 mol/L H3PO4. Such amines readily bond to the Pt surface. In aqueous HClO4 electrolyte, the ORR activity of Pt decreases monotonically with increasing pre‐adsorbate coverage. In aqueous H3PO4 electrolyte, the ORR activity of Pt initially increases and then decreases with in‐creasing pre‐adsorbate coverage. The maximum ORR activity in H3PO4 occurs at a pre‐adsorbate coverage of around 20%. The effect of molecular length of the pre‐adsorbate is negligible, but its coverage strongly affects the degree to which phosphoric anion adsorption is inhibited. Butylamine adsorbs to Pt at partial active sites, which decreases the electrochemically active surface area. Ad‐sorbed butylamine may also modify the electronic structure of the Pt surface. The ORR activity in the phosphoric acid electrolyte remains relatively low, even when using the pre‐adsorbate modified Pt/C catalysts. Further development of the catalyst and electrolyte is required before the commer‐cialization of H3PO4‐PBI‐based PEMFCs can be realized.
参考文献
[1] | M. Schuster;T. Rager;A. Noda;K. D. Kreuer;J. Maier.About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds[J].Fuel cells,20053(3):355-365. |
[2] | J. E. Newton;J. A. Preece;N. V. Rees.Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis?[J].Physical chemistry chemical physics: PCCP,201423(23):11435-11446. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%