A titania support with a large surface area was developed, which has a BET surface area of 380.5 m2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt%vanadia. A special heat treatment was used in the calcination to maintain the large sur‐face area and high dispersion of vanadium species. This catalyst was compared to a common V2O5‐TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new cata‐lyst has a surface area of 117.7 m2/g, which was 38%higher than the traditional V2O5‐TiO2 catalyst. The selective catalytic reduction (SCR) performance demonstrated that the new catalyst had a wid‐er temperature window and better N2 selectivity compared to the traditional one. The NO conver‐sion was>80%from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V‐O‐V linkages on the catalyst prepared by the traditional method. The amount of V‐O‐Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
参考文献
[1] | R.O.Long;R.T.Yang.Selective catalytic oxidation of ammonia to nitrogen over Fe_2O_3-TiO_2 prepared with a sol-gel method[J].Journal of Catalysis,20022(2):158-165. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%