欢迎登录材料期刊网

材料期刊网

高级检索

非均相光催化过程是指多相多尺度体系在光辐射作用下发生的一个复杂的催化过程,被认为最有潜力解决环境污染和能源短缺问题的绿色及可再生的技术之一。在目前已经报道的各种非均相光催化剂中, TiO2纳米材料被证实是应用最广泛、光催化效果最好的催化剂,是当前国际材料、环境和能源等领域的研究前沿和热点,高性能TiO2基光催化材料的设计及改性一直是该领域的难点,其关键问题主要为:如何增强TiO2的表面光催化量子效率、促进光生载流子分离和拓展其可见光响应范围。尽管已经有很多关于TiO2光催化的综述,但大多综述集中在高性能TiO2的制备及各种改性策略研究,而对各种改性策略与光催化分子机理之间的关系阐述较少。为此,本文深入分析了TiO2纳米材料的非均相光催化本质并总结了各种表面改性策略。首先从热力学角度阐明TiO2的热力学能带能够确保其实现各种典型光催化反应(包括光催化降解、CO2还原及光解水),证实其广泛应用的可行性。然后,对TiO2光生载流子的动力学基础进行总结,证实快速的广生载流子复合以及较慢的表面化学反应动力学是限制其光催化活性提高的关键制约性因素。于此同时,对TiO2纳米材料的表面Zeta点位、超亲水性、超强酸光催化剂制备(表面羟基取代)等重要的表面化学性质也进行了详细阐述。从而可以初步得出如下结论:表面改性是设计高性能TiO2光催化材料的重中之重,并将各种改性策略浓缩在6个方面:表面掺杂和敏化,构建表面异质结,负载纳米助催化剂,增加可利用的比表面剂,利用表面氟效应以及暴露高活性晶面等。显然,表面掺杂和敏化可以减小TiO2纳米材料的禁带宽度,从而大幅拓宽其可见光吸收范围及光催化效率。而构建紧密的表面异质结可以创建界面电场,不仅可以促进光生电荷分离效率,而且可以有效提高界面电荷转移效率,最终实现异质结的高光催化效率。负载纳米助催化剂则可以大幅加快表面化学反速率,降低光生载流子的表面复合并增加其利用率,并有可能减少不期望的表面逆反应,从而实现光催化活性提升。增加可利用的比表面剂,可以有效提升光催化剂与吸附质之间的有效接触面积,缩短了载流子的传输距离以及通过多次反射与折射提升光能的利用率,从而全方位地提升TiO2纳米材料的光催化活性。对TiO2纳米材料表面进行氟化,可以增加光生羟基自由基的速率以及浓度,并可以通过调节TiO2表面酸碱性而控制其光催化选择性,从而实现高效高选择性光催化。最后,通过暴露TiO2纳米材料的高活性晶面,也可以促进光生载流子分离、增加吸附性能或羟基自由基生成速率,从而获得高光催化效率。另外,这些表面改性策略的协同效应仍是较有前景的TiO2纳米光催化剂改性技术,值得深入研究。同时,深入的光催化分子机理探索仍然是必须的,其不仅有助于发现影响TiO2纳米材料光催化活性提高的关键性制约因素,而且也可以指导开发新型的TiO2纳米光催化剂改性技术。总而言之,通过总结TiO2纳米材料在光催化、表面化学及表面改性等方面的重要进展,可为设计高效的TiO2基及非TiO2基光催化剂并应用于太阳燃料生产、环境修复、有机合成及相关的领域(如太阳能电池、热催、分离和纯化)等提供新的思路。

As a green and sustainable technology, heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors, TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photoca‐talysis and surface chemistry of TiO2 nanomaterials, we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization, construction of surface heterojunctions, loading of nano‐sized co‐catalysts, increase in the accessible surface areas, and usage of surface F effects and exposure of highly reac‐tive facets. Especially, the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photo‐catalysis fundamentals, and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2‐based and non‐TiO2‐based photocatalysts for solar fuel production, environmental remediation, organic photosynthesis, and other related fields such as solar cell de‐vice fabrication, thermal catalysis, and separation and purification.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%