欢迎登录材料期刊网

材料期刊网

高级检索

综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展。介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展。负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高。其它贵金属催化剂,如Pd, Au和Ag也表现出较高的催化活性。当以RGO或少层石墨烯为载体时, Pd催化剂的稳定性提高。讨论了氧化石墨烯负载Au或Ag催化剂的合成方法。另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能。 Fe和Co是可替代的廉价ORR催化剂。在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂。

Very recent progress on the graphene derivatives supported variable nanocatalysts for oxygen reduction reaction (ORR) in fuel cell is reviewed. First, common electrochemical techniques to characterize graphene‐based electrocatalysts are mentioned. Second, recent updates on graphene‐ derived electrocatalysts are introduced. In this part, both electrochemical activity and stability of Pt catalysts can be improved when they are supported by reduced graphene oxide (RGO). Other noble‐metal catalysts including Pd, Au, and Ag showing comparable performance have been investigated. The stability of Pd catalyst is enhanced by RGO or few‐layered graphene support. Synthetic approaches for Au or Ag catalysts supported on graphene oxide are discussed. In addition, non‐noble transition metals in N4‐chelate complexes can reduce oxygen electrochemically. Fe and Co are cheap alternative catalysts for ORR. In most cases, the stability and tolerance issues are overcome well, but their overall performances don’t seem to surpass Pt/C catalyst yet.

参考文献

[1] Zhu C Z;Dong S J .[J].Nanoscale,2013,5:1753.
[2] Guo S J;Zhang S;Sun S H .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,52:8526.
[3] Wang Y J;Wilkinson D P;Zhang J J .[J].CHEMICAL REVIEWS,2011,111:7625.
[4] Song C J;Zhang J J.[A].London:Springer,2008:89.
[5] Liu Y;Wu Y Y;Lü G J;Pu T He X Q Cui L L .[J].Electrochimica Acta,2013,112:269.
[6] Liu J F;Takeshi D;Orejon D;Sasaki K Lyth S M .[J].Journal of the Electrochemical Society,2014,161:F544.
[7] Monteverde Videla A H A;Ban S;Specchia S;Zhang L Zhang J J .[J].CARBON,2014,76:386.
[8] Jin S;Chen M;Dong H F;He B Y Lu H T Su L Dai W H Zhang Q C Zhang X J .[J].Journal of Power Sources,2015,274:1173.
[9] Ghanbarlou H;Rowshanzamir S;Kazeminasab B;Parnian M J .[J].Journal of Power Sources,2015,273:981.
[10] Knights S D;Colbow K M;St-Pierre J;Wilkinson D P .[J].Journal of Power Sources,2004,127:127.
[11] Yuan X Z;Wang H J.[A].London:Springer,2008:1.
[12] He D P;Cheng K;Li H G;Peng T Xu F Mu S C Pan M .[J].LANGMUIR,2012,28:3979.
[13] Li Y J;Zhu E B;McLouth T Chiu C Y Huang X Q Huang Y .[J].Journal of the American Chemical Society,2012,134:12326.
[14] He D P;Cheng K;Peng T;Sun X L Pan M Mu S C .[J].Journal of Materials Chemistry,2012,22:21298.
[15] Yu X Q;Wang H;Guo L P;Wang L .[J].Chem Asian J,2014,9:3221.
[16] Seo M H;Choi S M;Kim H J;Kim W B .[J].ELECTROCHEMISTRY COMMUNICATIONS,2011,13:182.
[17] Kong X K;Chen Q W;Lun Z Y .[J].CHEMPHYSCHEM,2014,15:344.
[18] Huang Y X;Xie J F;Zhang X;Xiong L Yu H Q .[J].ACS Appl Mater Interf,2014,6:15795.
[19] Truong-Phuoc L;Pham-Huu C;Da Costa V;Janowska I .[J].Chemistry Communications,2014,50:14433.
[20] Janowska I;Vigneron F;Begin D;Ersen O Bernhardt P Romero T Ledoux M J Pham-Huu C .[J].CARBON,2012,50:3106.
[21] Haruta M;Yamada N;Kobayashi T;Iijima S .[J].Journal of Catalysis,1989,115:301.
[22] Haruta M .[J].Catalysis Today,1997,36:153.
[23] Lee I;Joo J B;Yin Y;Zaera F .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2011,50:10208.
[24] Wang S N;Zhang M C;Zhang W Q .[J].ACS Catal,2011,1:207.
[25] Wu X F;Song H Y;Yoon J M;Yu Y T Chen Y F .[J].LANGMUIR,2009,25:6438.
[26] Geim A K;Novoselov K S .[J].NATURE MATERIALS,2007,6:183.
[27] Allen M J;Tung C V;Kaner B R .[J].CHEMICAL REVIEWS,2010,110:132.
[28] Xu S J;Wu P Y .[J].J Mater Chem A,2014,2:13682.
[29] Lightcap I V;Kosel T H;Kamat P V .[J].Nano Letters,2010,10:577.
[30] Wu D Q;Zhang F;Liu P;Feng X L .[J].Chemistry-A European Journal,2011,17:10804.
[31] Xu S J;Yong L;Wu P Y .[J].ACS Appl Mater Interfaces,2013,5:654.
[32] Dhavale V M;Gaikwad S S;Kurungot S .[J].J Mater Chem A,2014,2:1383.
[33] Zhang P P;Huang Y;Lu X;Zhang S Y Li J F Wei G Su Z Q .[J].LANGMUIR,2014,30:8980.
[34] Wang F B;Wang J;Shao L;Zhao Y Xia X H .[J].ELECTROCHEMISTRY COMMUNICATIONS,2014,38:82.
[35] Govindhan M;Chen A .[J].Journal of Power Sources,2015,274:928.
[36] Li X R;Li X L;Xu M C;Xu J J Chen H Y .[J].J Mater Chem A,2014,2:1697.
[37] Kim S S;Kim Y R;Chung T D;Sohn B H .[J].Advanced Functional Materials,2014,24:2764.
[38] Liu F;Choi J Y;Seo T S .[J].Chemistry Communications,2010,46:2844.
[39] Liu J B;Li Y L;Li Y M;Li J H Deng Z X .[J].Journal of Materials Chemistry,2010,20:900.
[40] Imura Y;Maezawa A;Morita C;Kawai T .[J].LANGMUIR,2012,28:14998.
[41] Yin H J;Tang H J;Wang D;Gao Y Tang Z Y .[J].ACS Nano,2012,6:8288.
[42] Ji X H;Song X N;Li J;Bai Y B Yang W S Peng X G .[J].Journal of the American Chemical Society,2007,129:13939.
[43] Huo Z Y;Tsung C K;Huang W Y;Zhang X F Yang P D .[J].Nano Letters,2008,8:2041.
[44] Choi H C;Shim M;Bangsaruntip S;Dai H J .[J].Journal of the American Chemical Society,2002,124:9058.
[45] Yuan L Z;Jiang L H;Liu J;Xia Z X Wang S L Sun G Q .[J].Electrochimica Acta,2014,135:168.
[46] Liu R J;Yu X L;Zhang G J;Zhang S J Cao H B Dolbecq A Mialane P Keita B Zhi L J .[J].J Mater Chem A,2013,1:11961.
[47] Davis D J;Raji A R O;Lambert T N;Vigil J A Li L Nan K Tour J M .[J].ELECTROANALYSIS,2014,26:164.
[48] Kumar S;Selvaraj C;Scanlon L G;Munichandraiah N .[J].Physical Chemistry Chemical Physics,2014,16:22830.
[49] Lim E J;Choi S M;Seo M H;Kim Y Lee S Kim W B .[J].ELECTROCHEMISTRY COMMUNICATIONS,2013,28:100.
[50] Genies L;Faure R;Durand R .[J].Electrochimica Acta,1998,44:1317.
[51] Shin H J;Kim K K;Benayad A;Yoon S M Park H K Jung I S Jin M H Jeong H K Kim J M Choi J Y Lee Y H .[J].Advanced Functional Materials,2009,19:1987.
[52] Jasinski R J .[J].NATURE,1964,201:1212.
[53] Jiang Y Y;Lu Y Z;Lü X Y;Han D X Zhang Q X Niu L Chen W .[J].ACS Catal,2013,3:1263.
[54] Zhao X N;Zhang P P;Chen Y T;Su Z Q Wei G .[J].Nanoscale,2015,7:5080.
[55] Tiwari J N;Kemp K C;Nath K;Tiwari R N Nam H G Kim K S .[J].ACS Nano,2013,7:9223.
[56] Chen H S;Liang Y T;Chen T Y;Tseng Y C Liu C W Chung S R Hsieh C T Lee C E Wang K W .[J].Chemistry Communications,2014,50:11165.
[57] Tiido K;Alexeyeva N;Couillard M;Bock C MacDougall B R Tam-meveski K .[J].Electrochimica Acta,2013,107:509.
[58] Tan Y M;Xu C F;Chen G X;Zheng N F Xie Q J .[J].Energy Environ Sci,2012,5:6923.
[59] Chou C C;Liu C H;Chen B H .[J].ENERGY,2014,70:231.
[60] Tiwari J N;Nath K;Kumar S;Tiwari R N Kemp C Le N H Youn D H Lee J S Kim K S .[J].Nat Commun,2013,4:3221.
[61] Nam K W;Song J;Oh K H;Choo M J Park H A Park J K Choi J W .[J].Journal of Solid State Electrochemistry,2013,17:767.
[62] Li Y J;Zhu E B;McLouth T Chiu C Y Huang X Q Huang Y .[J].Journal of the American Chemical Society,2012,134:12326.
[63] Carrera-Cerritos R;Baglio V;Aricò A S;Ledesma-García J Sgroi M F Pullini D Pruna A J Mataix D B Fuentes-Ramírez R Arriaga L G .[J].Applied Catalysis B:Environmental,2014,144:554.
[64] Kakaei K;Gharibi H .[J].ENERGY,2014,65:166.
[65] Zhang P D;Zhang X Y;Zhang S Y;Lu X Li Q Su Z Q Wei G .[J].J Mater Chem B,2013,1:6525.
[66] Yu D B;Yao J F;Qiu L;Wu Y Z Li L X Feng Y Liu Q Li D Wang H T .[J].RSC Adv,2013,3:11552.
[67] Yin H;Zhang C Z;Liu F;Hou Y L .[J].Advanced Functional Materials,2014,24:2930.
[68] Gao X;Wang J F;Ma Z;Ye J S .[J].Electrochimica Acta,2014,130:543.
[69] He C Y;Zhang J J;Shen P K .[J].J Mater Chem A,2014,2:3231.
[70] Lin L;Li M;Jang L Q;Li Y F Liu D J He X Q Cui L L .[J].Journal of Power Sources,2014,268:269.
[71] Li M;Bo X J;Zhang Y F;Han C Guo L P .[J].Journal of Power Sources,2014,264:114.
[72] Lim C S;Ambrosi A;Sofer Z;Pumera M .[J].Nanoscale,2014,6:7391.
[73] Taniguchi T;Tateishi H;Miyamoto S;Hatakeyama K Ogata C Fu-natsu A Hayami S Makinose Y Matsushita N Koinuma M Matsumoto Y .[J].PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION,2013,30:1063.
[74] Zheng B;Wang J;Wang F B;Xia X H .[J].J Mater Chem A,2014,2:9079.
[75] Jiang Y Y;Lu Y Z;Wang X D;Bao Y Chen W Niu L .[J].Nanoscale,2014,6:15066.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%