由酸活化的高岭土制备了多级纳米孔HY分子筛。通过改变老化时间和晶化时间可得到最大的多级因子(HF),此时外比表面积最大而微孔孔体积变化不大。运用X射线衍射(XRD)、X射线荧光光谱、N2吸附-脱附法和NH3程序升温脱附对所得样品进行了表征。老化2 d和晶化24 h所制的纳米孔HY分子筛样品的HF值最大。样品的酸性和结晶度也随着制备条件而变化。另外,适量NaCl的嵌入对提高对所制样品的HF值、酸性和结晶度起到重要作用。通过比较样品和常规HY分子筛的XRD峰强度算得样品的结晶度。结果表明,优化合成条件可得到广泛适用于工业化的分子筛制备路线。
Hierarchical nanoporous HY zeolites were synthesized from acid‐activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X‐ray diffraction (XRD), X‐ray fluorescence, N2 adsorption, and NH3 temperature‐programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidity and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCl was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for HY zeolite produc‐tion.
参考文献
[1] | Karami D;Rohani S .[J].Chemical Engineering Progress,2009,48:1288. |
[2] | Shen S C;Chen Q;Chow P S;Tan G H Zeng X T Wang Z Tan R B H .[J].J Phys Chem C,2007,111:700. |
[3] | Verhoef M J;Kooyman P J;van der Waal J C;Rigutto M S Peters J A van Bekkum H .[J].CHEMISTRY OF MATERIALS,2001,13:683. |
[4] | Groen J C;Moulijn J A;Pérez-Ramírez J .[J].Journal of Materials Chemistry,2006,16:2121. |
[5] | Guo W P;Huang L M;Deng P;Xue Z Y Li Q Z .[J].Microporous and Mesoporous Materials,2001,44-45:427. |
[6] | Huang L M;Guo W P;Deng P;Xue Z Y Li Q Z .[J].Journal of Physical Chemistry B,2000,104:2817. |
[7] | Tan Q F;Bao X J;Song T C;Fan Y Shi G Shen B Liu C H Gao X H .[J].Journal of Catalysis,2007,251:69. |
[8] | Ogura M;Shinomiya S Y;Tateno J;Nara Y Nomura M Kikuchi E Matsukata M .[J].Applied Catalysis A:General,2001,219:33. |
[9] | Jacobsen C J H;Madsen C;Houzvicka J;Schmidt I Carlsson A .[J].Journal of the American Chemical Society,2000,122:7116. |
[10] | Han Y;Wu S;Sun Y Y;Li D S Xiao F S Liu J Zhang X Z .[J].CHEMISTRY OF MATERIALS,2002,14:1144. |
[11] | van Donk S;Janssen A H;Bitter J H;de Jong K P .[J].CATALYSIS REVIEWS-SCIENCE AND ENGINEERING,2003,45:297. |
[12] | Xu M C;Cheng M J;Bao X H.[J].Chemistry Communications,2000:1873. |
[13] | Rong T J;Xiao J K .[J].Materials Letters,2002,57:297. |
[14] | Lenarda M;Storaro L;Talon A;Moretti E Riello P .[J].Journal of Colloid and Interface Science,2007,311:537. |
[15] | Liu X M;Yan Z F;Wang H P;Luo Y T .[J].Journal of Natural Gas Chemistry,2003,12:63. |
[16] | Chandrasekhar S;Pramada P .[J].Applied Clay Seience,2004,27:187. |
[17] | Yu J;Shi J L;Chen H R;Yan J N Yan D S .[J].Microporous and Mesoporous Materials,2001,46:153. |
[18] | Hosseinpour N;Mortazavi Y;Bazyari A;Khodadadi A A .[J].FUEL PROCESSING TECHNOLOGY,2009,90:171. |
[19] | Frunz L;Prins R;Pirngruber G D .[J].Microporous and Mesoporous Materials,2006,88:152. |
[20] | Zheng J J;Yi Y M;Wang W L;Guo K Ma J H Li R F .[J].Microporous and Mesoporous Materials,2013,171:44. |
[21] | Pérez-Ramírez J;Verboekend D;Bonilla A;Abello S .[J].Advanced Functional Materials,2009,19:3972. |
[22] | Zheng J J;Zeng Q H;Yi Y M;Wang Y Ma J H Qin B Zhang X W Sun W F Li R F .[J].Catalysis Today,2011,168:124. |
[23] | Zheng J J;Zeng Q H;Zhang Y Y;Wang Y Ma J H Zhang X W Sun W F Li R F .[J].CHEMISTRY OF MATERIALS,2010,22:6065. |
[24] | Konno H;Tago T;Nakasaka Y;Ohnaka R Nishimura J I Masuda T .[J].Microporous and Mesoporous Materials,2013,175:25. |
[25] | Konno H;Okamura T;Kawahara T;Nakasaka Y Tago T Masuda T .[J].CHEMICAL ENGINEERING JOURNAL,2012,207-208:490. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%