欢迎登录材料期刊网

材料期刊网

高级检索

在NaOH溶液(0.1 mol/L)中考察了Ni, Co和Cu二元和三元合金修饰的石墨电极上甲醇电氧化反应性能.采用循环伏安法、计时电流法和电化学阻抗谱(EIS)等技术研究了修饰电极的催化活性和协同效应.这些催化剂在含有Ni, Cu和Co离子溶液的阴极电位上反复浸渍石墨电极制得.结果表明,在甲醇存在下, Ni基三元合金修饰电极(G/NiCuCo)对甲醇氧化反应的响应值明显高于其它样品.阳极峰值电流与扫描速率的平方根呈线性关系,表明该过程受扩散控制.在CA区域,该反应遵循Cottrellin特性,甲醇扩散系数为6.25×10–6 cm2/s.甲醇氧化反应速率常数为40×107 cm3/(mol·s).另外,采用EIS研究了修饰电极表面上甲醇催化氧化反应.

The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni‐based ternary alloy electrode (G/NiCuCo) exhib‐ited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25×10?6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/(mol·s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode.

参考文献

[1] Ren X M;Zelenay P;Thomas S;Davey J Gottesfeld S .[J].Journal of Power Sources,2000,86:111.
[2] Hosseini M G;Momeni M M .[J].Electrochimica Acta,2012,70:1.
[3] Heli H;Jafarian M G;Mahjani M;Gobal F .[J].Electrochimica Acta,2004,49:4999.
[4] Scott K;Taama W M;Argyropoulos P .[J].Journal of Power Sources,1999,79:43.
[5] Kim J;Momma T;Osaka T .[J].Journal of Power Sources,2009,189:999.
[6] Wang Y;Li L;Hu L;Zhuang L Lu J T Xu B Q .[J].ELECTROCHEMISTRY COMMUNICATIONS,2003,5:662.
[7] Jafarian M;Forouzandeh F;Danaee I;Gobal F Mahjani M G .[J].Journal of Solid State Electrochemistry,2009,13:1171.
[8] Danaee I;Jafarian M;Forouzandeh F;Gobal F Mahjani M G .[J].International Journal of Hydrogen Energy,2008,33:4367.
[9] Danaee I;Jafarian M;Forouzandeh F;Gobal F Mahjani M G .[J].International Journal of Hydrogen Energy,2009,34:859.
[10] Nonaka H;Matsumura Y .[J].Journal of Electroanalytical Chemistry,2002,520:101.
[11] Li W Z;Liang C H;Zhou W J;Qiu J S Zhou Z H Sun G Q Xin Q .[J].Journal of Physical Chemistry B,2003,107:6292.
[12] Léger J M .[J].Journal of Applied Electrochemistry,2001,31:767.
[13] Iwasita T;Hoster H;John-Anacker A;Lin W F Vielstich W .[J].Lang-muir,2000,16:522.
[14] Jafarian M;Mahjani M;Heli H;Gobal F Khajehsharifi H Hamedi M .[J].Electrochimica Acta,2003,48:3423.
[15] Lima A;Coutanceau C;Léger J M;Lamy C .[J].Journal of Applied Electrochemistry,2001,31:379.
[16] Lu C;Rice C;Masel R;Babu P K Waszczuk P Kim H S Oldfield E Wieckowski A .[J].Journal of Physical Chemistry B,2002,106:9581.
[17] Xu D;Liu Z P;Yang H Z;Liu Q S Zhang J Fang J Y Zou S Z Sun K .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2009,48:4217.
[18] Min M K;Cho J;Cho K;Kim H .[J].Electrochimica Acta,2000,45:4211.
[19] Wang C;Waje M;Wang X;Tang J M Haddon R C Yan Y S .[J].Nano Letters,2004,4:345.
[20] Fleischmann M;Korinek K;Pletcher D .[J].J Electroanal Chem Interf Electrochem,1971,31:39.
[21] Golikand A N;Asgari M;Maragheh M G;Shahrokhian S .[J].J Electro-anal Chem,2006,588:155.
[22] Golikand A N;Shahrokhian S;Asgari M;Maragheh M G Irannejad L Khanchi A .[J].Journal of Power Sources,2005,144:21.
[23] Guo Y M;Hu C G;Yang L;Bai Z Y Wang K Chao S J .[J].ELECTROCHEMISTRY COMMUNICATIONS,2011,13:886.
[24] Hosseini M G;Abdolmaleki M;Ashrafpoor S .[J].催化学报,2013,34:1712.
[25] Ojani R;Raoof J B;Zavvarmahalleh S R H .[J].Electrochimica Acta,2008,53:2402.
[26] Ortega J M .[J].THIN SOLID FILMS,2000,360:159.
[27] Rahim M A A;Abdel Hameed R M;Khalil M W .[J].Journal of Power Sources,2004,134:160.
[28] Entina V S;Petrii O A .[J].Elektrokhimiya,1967,3:1237.
[29] Koch D F A;Rand D A J;Woods R .[J].J Electroanal Chem Interf Elec-trochem,1976,70:73.
[30] Li M Y;Zhao S Z;Han G Y;Yang B S .[J].Journal of Power Sources,2009,191:351.
[31] Danaee I;Jafarian M;Forouzandeh F;Gobal F Mahjani M G .[J].Elec-trochim Acta,2008,53:6602.
[32] Jafarian M;Moghaddam R B;Mahjani M G;Gobal F .[J].J Appl Electro-chem,2006,36:913.
[33] Jafarian M;Haghighatbin M A;Gobal F;Mahjani M G Rayati S .[J].Journal of Electroanalytical Chemistry,2011,663:14.
[34] Bard A J;Faulkner L R.Electrochemical Methods:Fundamentals and Applications[M].New York:John Wiley and Sons,Inc,2001:12,14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%