欢迎登录材料期刊网

材料期刊网

高级检索

四环素(TTC)因其广泛的抗菌性和低生产成本等特点而成为应用最广泛的兽医药物. TTC的大量使用不可避免地导致其进入地表水、地下水和污水处理厂.迄今,已有许多方法用于TTC检测,包括免疫测定法、微生物检测法和化学-物理法等.然而,这些方法费用高,耗时长或需要复杂的样品预处理过程,不适合现场测量或常规分析.电化学分析法具有操作简单、成本低廉、选择性和灵敏度较高、易实现在线检测等特点,在检测领域具有重要优势.石墨烯在电化学传感器领域表现出优越的应用性能,但有关石墨烯材料应用于电分析和电催化方面的报道仍然有限.石墨烯的前驱体氧化石墨烯(GO)片层底面上具有各种类型的含氧官能团和层状边缘,导致其绝缘并具有很多缺陷,使GO包含了sp2和sp3杂化碳原子,为GO提供了独特的具有化学功能的异构电子结构.通过对GO进行还原,可以生成新的sp2域或者改变含氧官能团的数量和类型,从而为GO提供更多的特殊性质.研究表明,电化学还原是一种绿色快速的还原方法,可以控制GO的还原程度和还原过程.本文利用电化学还原法来调整GO表面的官能团和缺陷度,利用在–0.8 V还原电位下得到的电化学还原氧化石墨烯(ERGO-0.8V)修饰玻碳电极(GC)为工作电极(GC/ERGO-0.8V),采用循环伏安法对溶解在pH=3的缓冲溶液中的TTC进行电化学检测,发现ERGO-0.8V对TTC具有电催化性能.利用红外光谱(FT-IR)、X射线光电子能谱(XPS)和拉曼光谱对ERGO-0.8V, ERGO-1.2V, GO及化学还原得到的石墨烯(CRGO)表面官能团和缺陷程度进行了表征,考察了TTC在ERGO-0.8V/GC上的电化学行为,对其电催化还原机理进行了推测.结果表明,与GO, ERGO-1.2V及CRGO修饰电极相比, GC/ERGO-0.8V修饰电极的催化还原峰在0–0.5 V,对TTC表现出独特的电催化性能, GC/ERGO-0.8V电极对浓度为0.1–120 mg/L的TTC溶液具有良好的检测性能,在不同浓度范围内其氧化峰峰电流与峰电位的线性关系不同. FT-IR和XPS结果显示,在–0.8 V还原电位下得到的ERGO-0.8V,其官能团类型和数量发生变化,但仍存在大量官能团,主要是羧基、羟基和环氧基.同时,拉曼表征显示ERGO-0.8V的缺陷密度增大,同时新生成的sp2域减小而使得ERGO的sp2域减小.对比GO等其他材料的表征结果推测,官能团变化是影响ERGO独特电催化性质的主要因素,除此之外还有材料的缺陷度和sp2域.推测GC/ERGO-0.8V修饰电极对TTC可能的催化机理为: TTC在GC/ERGO电极上的还原与氢醌和醌之间的转换有关;而对于ERGO,则可能对应于羧基和羟基之间的转化.然而,同样具有羧基和羟基的ERGO-1.2V则对TTC没有产生电催化作用.其原因可能是在–0.8到–1.2 V还原电位下,形成的羧基位于石墨烯片层内部,而片层内的电子传递较慢.

An electrochemically reduced graphene oxide sample, ERGO‐0.8V, was prepared by electrochemical reduction of graphene oxide (GO) at–0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO‐1.2V (GO applied to a negative potential of–1.2 V), GO, chemically reduced GO (CRGO)‐modified glassy carbon electrode (GC) and bare GC elec‐trodes. The redox peaks of TTC on an ERGO‐0.8V‐modified glass carbon electrode (GC/ERGO‐0.8V) were within 0–0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L. Physical characterizations with Fourier transform infrared (FT‐IR), Raman, and X‐ray photoelectron spectroscopies (XPS) demonstrated that the oxygen‐containing functional groups on GO diminished after the electrochemical reduction at–0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen‐containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mecha‐nism for the TTC redox reaction at the GC/ERGO‐0.8V electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.

参考文献

[1] Richardson B J;Lam P K S;Martin M .[J].Marine Pollut Bull,2005,50:913.
[2] Pruden A;Pei R;Storteboom H;Carlson K H .[J].Environmental Science and Technology,2006,40:7445.
[3] Oka H;Ito Y;Matsumoto H .[J].Journal of Chromatography A,2000,882:109.
[4] Schenck F J;Callery P S .[J].Journal of Chromatography A,1998,812:99.
[5] Zhou M;Wang Y L;Zhai Y M;Zhai J F Ren W Wang F Dong S J .[J].Chemi Eur J,2009,15:6116.
[6] Guo H L;Wang X F;Qian Q Y;Wang F B Xia X H .[J].ACS Nano,2009,3:2653.
[7] Loetanantawong B;Suracheep C;Somasundrum M;Surareungchai W .[J].Analytical Chemistry,2004,76:2266.
[8] Vega D;Agüí L;González-Cortés A;Yá?ez-Sede?o P Pingarrón J M .[J].Analytical Biochemistry,2007,389:951.
[9] Oungpipat W;Southwell-Keely P;Alexander P W .[J].ANALYST,1995,120:1559.
[10] Guo G P;Zhao F Q;Xiao F;Zeng B G .[J].International Journal of Electrochemical Science,2009,4:1365.
[11] Wang H T;Zhao H M;Quan X;Chen S .[J].ELECTROANALYSIS,2011,23:1863.
[12] Shao Y Y;Wang J;Wu H;Liu J Aksay I A Lin Y H .[J].ELECTROANALYSIS,2010,22:1027.
[13] Gao W;Alemany L B;Ci L J;Ajayan P M .[J].Nat Chem,2009,1:403.
[14] Loh K P;Bao Q L;Eda G;Chhowalla M .[J].Nat Chem,2010,2:1015.
[15] Zhu C Z;Dong S J .[J].Nanoscale,2013,5:1753.
[16] Ambrosi A;Bonanni A;Sofer Z;Cross J S Pumera M .[J].Chemistry-A European Journal,2011,17:10763.
[17] Wang J F;Yang S L;Guo D Y;Yu P Li D Ye J S Mao L Q .[J].ELECTROCHEMISTRY COMMUNICATIONS,2009,11:1892.
[18] Shao Y Y;Wang J;Engelhard M;Wang C M Lin Y H .[J].Journal of Materials Chemistry,2010,20:743.
[19] Ramesha G K;Sampath S .[J].J Phy Chem C,2009,113:7985.
[20] Xu X B;Huang D K;Cao K;Wang M K Zakeeruddin S M Gr?tzel M .[J].Sci Rep,2013,3:1489.
[21] Yang T;Li X;Li Q H;Guo X H Guan Q Jiao K .[J].Polym Chem,2013,4:1228.
[22] Yuan B Q;Zeng X Y;Xu C Y;Liu L Ma Y H Zhang D J Fan Y .[J].Sensors Actuat B,2013,184:15.
[23] Zhang D J;Xu C Y;Li S J;Zhang R C Yan H L Miao H J Fan Y Yuan B Q .[J].Journal of Electroanalytical Chemistry,2014,717-718:219.
[24] Pumera M .[J].CHEMICAL SOCIETY REVIEWS,2010,39:4146.
[25] Alwarappan S;Erdem A;Liu C;Li C Z .[J].J Phy Chem C,2009,113:8853.
[26] Zeng Q;Cheng J S;Tang L H;Liu X F Liu Y Z Li J H Jiang J H .[J].Advanced Functional Materials,2010,20:3366.
[27] Zhou Y F;Zhang G Q;Chen J;Yuan G E Xu L Liu L F Yang F L .[J].Elec-trochem Commun,2012,22:69.
[28] Stankovich S;Dikin D A;Piner R D;Kohlhaas K A Kleinhammes A Jia Y Y Wu Y Nguyen S T Ruoff R S .[J].CARBON,2007,45:1558.
[29] Noel M;Anantharaman P N .[J].Surface and Coatings Technology,1986,28:161.
[30] Hallam P M;Banks C E .[J].ELECTROCHEMISTRY COMMUNICATIONS,2011,13:8.
[31] Murphy M A;Wilcox G D;Dahm R H;Marken F .[J].Electrochem Com-mun,2003,5:51.
[32] Kang X H;Wang J;Wu H;Liu J Aksay I A Lin Y H .[J].TALANTA,2010,81:754.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%