TS-1分子筛具有MFI拓扑结构,因其独特的择形选择性和优异的催化氧化能力而广受关注.最早报道的TS-1合成方法采用大量四丙基氢氧化铵(TPAOH)作为有机结构导向剂, TPAOH价格昂贵,制约着TS-1分子筛大规模应用.开发廉价、环境友好的合成工艺是TS-1分子筛合成领域的重要课题.以价格相对较低的四丙基溴化铵(TPABr)代替TPAOH做有机结构导向剂,以氨水为碱源可合成TS-1分子筛,但产物晶粒尺寸远远大于以TPAOH做模板的合成结果,影响TS-1分子筛的传质和催化性能.因此,人们对该法进行了改进,选用有机胺作为碱源, TPABr为结构导向剂合成TS-1分子筛,但始终未能将其晶粒尺寸降至1μm以下.在合成体系中引入预先合成的TS-1分子筛或TS-1胶态前驱体作为晶种可以促进成核,缩短成核诱导期,有利于获得小晶粒尺寸的TS-1分子筛.此类方法往往需要辅助以大量有机胺等结构导向剂;胶态TS-1前驱体的制备需要特别小心以保证晶种中Ti的四配位状态,通常需要经历低温水解钛酸四丁酯(TBOT)和高温加热除醇等繁琐步骤.而胶态纯硅silicalite-1制备则相对简单,且已广泛用于导向合成同样具有MFI结构的ZSM-5沸石,但目前鲜有以silicalite-1做晶种合成TS-1分子筛的报道.基于此,本文以纯硅胶态silicalite-1为晶种,以氨水做碱源,辅助以少量TPABr做导向剂,合成了小晶粒TS-1分子筛,并以正己烯环氧化和环己酮氨肟化做探针反应考察了所得TS-1分子筛的催化氧化性能. X射线衍射结果表明,当晶种中SiO2占合成体系中SiO2的10 wt%(晶种引入TPAOH, TPAOH/SiO2=0.35),加入TPABr (TPABr/SiO2=0.03)做辅助结构导向剂,即合成体系中总(TPAOH+TPABr)/SiO2摩尔比低至0.07时,所得样品依然具有良好的结晶度.扫描电镜照片观察不到无定形物存在;晶种中SiO2占合成体系中SiO2的10 wt%时,所得TS-1晶粒尺寸约为250 nm ×150 nm ×50 nm;其他条件不变,胶态晶种用量增加到15 wt%时,初级晶粒尺寸基本保持不变,晶粒-晶粒之间交叉生长,形成孪生形貌;继续增加胶态晶种用量至20 wt%时,晶粒尺寸下降至仅100 nm左右;而用20 wt%胶态晶种所含相同量的TPAOH来代替胶态晶种,得到样品呈近10μm的大块状.与之对应的是,胶态silicalite-1晶种导向得到的小晶粒TS-1分子筛具有比直接用TPAOH得到的大块状样品更大的外比表面积和堆积孔体积.分析结果显示所得TS-1分子筛的体相TiO2/SiO2比在41–43.红外光谱和紫外可见光谱结果表明,胶态晶种导向法所得TS-1分子筛中的Ti主要以四配位状态存在,而直接用TPAOH合成的大块状样品则呈现显著骨架外Ti吸收峰,说明胶态晶种有助于Ti物种进入分子筛骨架.在催化正己烯环氧化反应时,用胶态silicalite-1晶种导向得到的小晶粒TS-1分子筛表现出与大块状TS-1相似的催化性能;而以环己酮氨肟化做探针反应时,小晶粒TS-1分子筛因具有外比表面积大和扩散路径短等优点而表现出远远高于大块状TS-1分子筛的催化活性.但与文献报道的相同SiO2/TiO2比的TS-1分子筛比较,本文所得小晶粒TS-1分子筛催化正己烯环氧化的活性略差.提高该小晶粒TS-1分子筛正己烯环氧化活性和建立构-效关系是下一步工作的重点.
Small‐crystal TS‐1 was synthesized via a seed‐induced approach using ammonia as the alkali source and tetrapropylammonium bromide as an auxiliary structure‐directing agent. The TS‐1 samples were characterized using X‐ray diffraction, N2 adsorption‐desorption, Fourier‐transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, scanning electron mi‐croscopy, and ultraviolet‐visible spectroscopy. The use of the colloidal seed reduced the crystal size, and an appropriate amount of silicalite‐1 seed assisted Ti incorporation into the TS‐1 framework. This method reduces the cost of TS‐1 synthesis because a significantly smaller amount of tetraprop‐ylammonium hydroxide is used. The catalytic performance of the synthesized small‐crystal TS‐1 samples in cyclohexanone ammoximation was better than that of bulk TS‐1 as a result of improved diffusion and a larger number of active tetrahedral Ti centers.
参考文献
[1] | Maspero F;Romano U .[J].Journal of Catalysis,1994,146:476. |
[2] | Martens J A;Buskens P;Jacobs P A;van der Pol A van Hooff J H C Ferrini C Kouwenhoven H W Kooyman P J van Bekkum H .[J].Applied Catalysis A:General,1993,99:71. |
[3] | Clerici M G .[J].Applied Catalysis,1991,68:249. |
[4] | Thangaraj A;Sivasanker S;Ratnasamy P .[J].Journal of Catalysis,1991,131:394. |
[5] | Clerici M G;Bellussi G;Romano U .[J].Journal of Catalysis,1991,129:159. |
[6] | Taramasso M;Perego G;Notari B .[P].US Patent 4410501,1983. |
[7] | Müller U;Steck W .[J].Studies in surface science and catalysis,1994,84:203. |
[8] | Wang X S;Guo X W .[J].Catalysis Today,1999,51:177. |
[9] | Li G;Guo X W;Wang X S;Zhao Q Bao X H Han X W Lin L W .[J].Applied Catalysis A:General,1999,185:11. |
[10] | Shibata M;Gérard J;Gabelica Z .[J].Studies in surface science and catalysis,1997,105:245. |
[11] | Tuel A .[J].ZEOLITES,1996,16:108. |
[12] | Yang G J;Wei Y X;Xu S T;Chen J R Li J Z Liu Z M Yu J H Xu R R .[J].J Phys Chem C,2013,117:8214. |
[13] | Sun Q M;Ma Y H;Wang N;Li X Xi D Y Xu J Deng F Yoon K B Oleynikov P Terasaki O Yu J .[J].J Mater Chem A,2014,2:17828. |
[14] | Tosheva L;Valtchev V P .[J].CHEMISTRY OF MATERIALS,2005,17:2494. |
[15] | Gonthier S;Thompson R W .[J].Studies in surface science and catalysis,1994,85:43. |
[16] | Deng X J;Wang Y N;Shen L;Wu H H Liu Y M He M Y .[J].Industrial and Engineering Chemistry Research,2013,52:1190. |
[17] | Xia Q H;Gao Z .[J].Materials Chemistry and Physics,1997,47:225. |
[18] | Zhang H J;Liu Y M;Jiao Z;He M Y Wu P .[J].Industrial and Engineering Chemistry Research,2009,48:4334. |
[19] | Zuo Y;Wang X S;Guo X W .[J].Industrial and Engineering Chemistry Research,2011,50:8485. |
[20] | Chen L;Wang Y M;He M Y .[J].Materials Research Bulletin,2011,46:698. |
[21] | Huang D G;Zhang X;Liu T W;Huang C Chen B H Luo C W Ruckenstein E Chao Z S .[J].Industrial and Engineering Chemistry Research,2013,52:3762. |
[22] | Wang M;Zhou J C;Mao G Y;Zheng X L .[J].Industrial and Engineering Chemistry Research,2012,51:12730. |
[23] | Zhang J H;Yue M B;Wang X N;Qin D .[J].Microporous and Mesoporous Materials,2015,217:96. |
[24] | Ren N;Yang Z J;Lü X C;Shi J Zhang Y H Tang Y .[J].Microporous and Mesoporous Materials,2010,131:103. |
[25] | Ren N;Broni?J;Suboti?B;Lü X C Yang Z J Tang Y .[J].Microporous and Mesoporous Materials,2011,139:197. |
[26] | Ren N;Broni?J;Suboti?B;Song Y M Lü X C Tang Y .[J].Microporous and Mesoporous Materials,2012,147:229. |
[27] | Xue T;Wang Y M;He M Y .[J].Microporous and Mesoporous Materials,2012,156:29. |
[28] | Xue T;Chen L;Wang Y M;He M Y .[J].Microporous and Mesoporous Materials,2012,156:97. |
[29] | Xue T;Wang Y M;He M Y .[J].Solid State Sciences,2012,14:409. |
[30] | Majano G;Darwiche A;Mintova S;Valtchev V .[J].Industrial and Engineering Chemistry Research,2009,48:7084. |
[31] | Li G;Wang X S;Guo X W;Liu S Zhao Q Bao X H Lin L W .[J].Materials Chemistry and Physics,2001,71:195. |
[32] | Klaas J;Kulawik K;Schulz-Ekloff G;Jaeger N I .[J].Studies in surface science and catalysis,1994,84:2261. |
[33] | Bertucci C;Lazzaroni R;Salvadori P;Johnson W C Jr.[J].Journal of the Chemical Society Chemical Communications,1981:590. |
[34] | Jacobs P A;Beyer H K;Valyon J .[J].ZEOLITES,1981,1:161. |
[35] | Jansen J C;van der Gaag F J;van Bekkum H .[J].ZEOLITES,1984,4:369. |
[36] | Scarano D;Zecchina A;Bordiga S;Geobaldo F,Spoto G,Petrini G,Leofanti G,Padovan M,Tozzola G .[J].Journal of the Chemical Society Faraday Transactions,1993,89:4123. |
[37] | Shibata M;Gérard J;Gabelica Z .[J].Studies in surface science and catalysis,1997,105:245. |
[38] | 赵琦;韩秀文;刘秀梅;翟润生 林励吾 包信和 郭新闻 李钢 王祥生 .[J].物理化学学报,1998,14:906. |
[39] | van der Pol A J H P;van Hooff J H C .[J].Applied Catalysis A:General,1992,92:93. |
[40] | Vayssilov G N .[J].Catalysis Reviews-Science and Engineering,1997,39:209. |
[41] | Sazama P;Dedecek J;Gabova V;Wichterlova B Spoto G Bordiga S .[J].Journal of Catalysis,2008,254:180. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%