稀土金属有机骨架(Ln-MOFs)是利用有机配体和稀土离子之间配位自组装形成的具有超分子多孔网络结构的类沸石材料,其优点是稳定性好,一般不溶于常规的有机和无机溶剂,并且孔径、孔形及孔表面性质可通过其构建分子的选择或修饰进行灵活设计和制备.稀土离子性能独特,有机配体种类繁多,将稀土离子与有机配体可控组装可获得许多结构多样、性能优异的Ln-MOFs材料.这些功能材料已在气体吸附与分离、发光器件、化学传感以及磁性材料等多方面显示出潜在应用价值.特别是Ln-MOFs材料作为非均相催化剂具有热稳定性高、比表面积大以及稀土离子配位环境多样等优点,近年来受到国内外研究者关注和重视.后合成修饰法(PSM)是利用MOFs骨架中不饱和配位的金属离子或潜在的有机反应基团,通过配位键或共价键方式引入有机或无机分子,制备具有新功能的骨架材料.本文采用PSM策略,将三种不同的有机二胺后合成修饰到具有配位不饱和位点的稀土金属有机骨架[Er(btc)]的孔道中,得到三种固体碱催化剂:Er(btc)(ED)0.75(H2O)0.25(2), Er(btc)(PP)0.55(H2O)0.45(3)和Er(btc)(DABCO)0.15(H2O)0.85(4).其中, btc为1,3,5-均苯三甲酸, ED为乙二胺, PP为哌嗪, DABCO位为三乙烯二胺.单晶结构分析表明,在[Er(btc)(H2O)]·DMF0.7(1)中,铒离子与六个btc配体的六个羧酸氧原子和一个水分子配位,形成变形的五角双锥几何构型.每个btc配体连接六个铒离子构成具有一维开放孔道(0.7 nm′0.7 nm)的三维立体结构.重要的是,孔道中的配位水分子和游离DMF分子可通过真空加热除去而不影响其骨架结构(热稳定性达500 oC),这将有利于对其进行后合成修饰.热重分析(TGA)表明,催化剂2在25–300 oC失去孔道中配位的乙二胺和水分子;催化剂3在250 oC之前失去孔道中的哌嗪和水分子;催化剂4则在100 oC之前失去孔道中配位的三乙烯二胺和水分子.粉末X射线衍射(PXRD)结果显示,后合成修饰过程并没有改变催化剂骨架的稳定性,其稳定性在空气中超过30 d.氮气吸附实验表明, Ln-MOF 1的比表面积和孔体积分别为2000 m2/g和0.75 cm3/g,平均孔尺寸为0.65 nm,与晶体结构分析结果基本一致.相比之下,后合成修饰的催化剂2的比表面积明显降低,为650 m2/g,而催化剂3和4由于后修饰较大体积的二胺分子(哌嗪和三乙烯二胺),表现出可忽略的氮气吸附能力.上述结果表明,催化剂2具有较高的有机胺负载量、较高的热稳定性和多孔性.采用苯甲醛和丙二腈的Knoevenagel缩合反应研究了三种固体碱的非均相催化能力.结果表明,在相同反应条件下,催化剂2具有很好的首次催化能力(99%),优于催化剂3(93%)和4(63%).并且,催化剂2循环使用三次后,催化能力几乎没有改变,而催化剂3和4的催化能力则逐渐降低,催化剂4在第三次使用时已无催化能力.滤出实验显示,催化剂2在反应过程中无活性物种离去进入液相体系中,即无乙二胺分子从催化剂骨架孔道中离去,证明其为非均相催化本质.而催化剂3和4则在反应过程中有二胺分子离去,进入反应液相中,从而导致其循环使用催化能力降低.催化剂2的底物择形催化反应结果显示,先是丙二腈分子进入催化剂孔道中,形成碳负离子,然后亲核进攻醛分子生成产物.因此,体积较大的腈衍生物因不能进入孔道而不能发生反应,而体积较大的醛分子则不受影响,能顺利地发生反应.
A post‐synthetic modification strategy has been used to prepare three solid base catalysts, in‐cluding Er(btc)(ED)0.75(H2O)0.25 (2, btc=1,3,5‐benzenetricarboxylates, ED=1,2‐ethanediamine), Er(btc)(PP)0.55(H2O)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4‐diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsatu‐rated Er(III) ions into the channels of the desolvated lanthanide metal‐organic framework (Er(btc)). The resulting metal‐organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X‐ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4 for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size‐selective catalysis tests.
参考文献
[1] | O'Keeffe M;Yaghi O M .[J].CHEMICAL REVIEWS,2012,112:675. |
[2] | Li J R;Sculley J;Zhou H C .[J].CHEMICAL REVIEWS,2012,112:869. |
[3] | Ma L Q;Abney C;Lin W B .[J].CHEMICAL SOCIETY REVIEWS,2009,38:1248. |
[4] | Cook T R;Zheng Y R;Stang P J .[J].CHEMICAL REVIEWS,2013,113:734. |
[5] | Cui Y J;Yue Y F;Qian G D;Chen B L .[J].CHEMICAL REVIEWS,2012,112:1126. |
[6] | Shi D B;Ren Y W;Jiang H F;Cai B W Lu J X .[J].Inorganic Chemistry,2012,51:6498. |
[7] | Liu J W;Chen L F;Cui H;Zhang J Y Zhang L Su C Y .[J].CHEMICAL SOCIETY REVIEWS,2014,43:6011. |
[8] | Sharma M K;Singh P P;Bharadwaj P K .[J].Journal of Molecular Catalysis A:Chemical,2011,342-343:6. |
[9] | Ren Y W;Liang J X;Lu J X;Cai B W,Shi D B,Qi C R,Jiang H F,Chen J,Zheng D.[J].European Journal of Inorganic Chemistry,2011:4369. |
[10] | Cai B W;Ren Y W;Jiang H F;Zheng D Shi D B Qian Y Y Hu H X .[J].Inorganic Chemistry Communications,2012,15:159. |
[11] | Cai B W;Ren Y W;Jiang H F;Zheng D Shi D B Qian Y Y Chen J .[J].CRYSTENGCOMM,2012,14:5285. |
[12] | Shi D B;Ren Y W;Jiang H F;Cai B W Lu J X .[J].Inorganic Chemistry Communications,2012,24:114. |
[13] | Gustafsson M;Bartoszewicz A;Martín-Matute B;Sun J L Grins J Zhao T Li Z Y Zhu G S Zou X D .[J].CHEMISTRY OF MATERIALS,2010,22:3316. |
[14] | Zhang J;Huang J;Yang J;Chen H J .[J].Inorganic Chemistry Communications,2012,17:163. |
[15] | Lin Z J;Yang Z;Liu T F;Huang Y B Cao R .[J].Inorganic Chemistry,2012,51:1813. |
[16] | Li Y X;Xue M;Guo L J;Huang L Chen S R Qiu S L .[J].Inorganic Chemistry Communications,2013,28:25. |
[17] | Wang Z Q;Cohen S M .[J].CHEMICAL SOCIETY REVIEWS,2009,38:1315. |
[18] | Cohen S M .[J].CHEMICAL REVIEWS,2012,112:970. |
[19] | Corma A;García H;Llabrés i Xamena F X .[J].CHEMICAL REVIEWS,2010,110:4606. |
[20] | Wang Z Q;Cohen S M .[J].Journal of the American Chemical Society,2007,129:12368. |
[21] | Costa J S;Gamez P;Black C A;Roubeau O,Teat S J,Reedijk J.[J].European Journal of Inorganic Chemistry,2008:1551. |
[22] | Ahnfeldt T;Gunzelmann D;Loiseau T;Hirsemann D Senker J Férey G Stock N .[J].Inorganic Chemistry,2009,48:3057. |
[23] | Garibay S J;Wang Z Q;Cohen S M .[J].Inorganic Chemistry,2010,49:8086. |
[24] | Hwang Y K;Hong D Y;Chang J S;Jhung S H Seo Y K Kim J Vimont A Daturi M Serre C Férey G .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2008,47:4144. |
[25] | Huang Y B;Zheng Z L;Liu T F;Lü J Lin Z J Li H F Cao R .[J].CATALYSIS COMMUNICATIONS,2011,14:27. |
[26] | Tanabe K K;Wang Z Q;Cohen S M .[J].Journal of the American Chemical Society,2008,130:8508. |
[27] | Demessence A;D'Alessandro D M;Foo M L;Long J R .[J].Journal of the American Chemical Society,2009,131:8784. |
[28] | Canivet J;Aguado S;Daniel C;Farrusseng D .[J].ChemCatChem,2011,3:675. |
[29] | Vermoortele F;Ameloot R;Vimont A;Serre C De Vos D .[J].Chemistry Communications,2011,47:1521. |
[30] | Banerjee M;Das S;Yoon M;Choi H J Hyun M H Park S M Seo G Kim K .[J].Journal of the American Chemical Society,2009,131:7524. |
[31] | Jiang H L;Tsumori N;Xu Q .[J].Inorganic Chemistry,2010,49:10001. |
[32] | Angeletti E;Canepa C;Martinetti G;Venturello P .[J].Tetrahedron Letters,1988,29:2261. |
[33] | Parida K M;Rath D .[J].Journal of Molecular Catalysis A:Chemical,2009,310:93. |
[34] | Tran U P N;Le K K A;Phan N T S .[J].ACS Catal,2011,1:120. |
[35] | Gascon J;Aktay U;Hernandez-Alonso M D;Van Klink G P M Kapteijn F .[J].Journal of Catalysis,2009,261:75. |
[36] | Tan Y;Fu Z Y;Zhang J .[J].Inorganic Chemistry Communications,2011,14:1966. |
[37] | Nguyen L T L;Le K K A;Truong H X;Phan N T S .[J].Catal Sci Technol,2012,2:521. |
[38] | Hartmann M;Fischer M .[J].Microporous and Mesoporous Materials,2012,164:38. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%