超声波在水中传播时会产生大量空化气泡,空化气泡经历成核、生长和瞬间崩塌等过程,并在崩塌瞬间产生局部高温和高压,过程中会发出瞬间闪光,即声致发光.局部高温高压及声致发光可将半导体价带上的电子激发至导带,形成电子/空穴对,电子和空穴迁移至半导体颗粒表面,参与一系列氧化还原反应致使有机污染物发生分解.由于超声波在各种液体中都具有很强的穿透能力,因此与半导体光催化技术相比,半导体超声催化技术在降解高浓度和不透明染料废水时具有明显优势. LuFeO3是稀土正铁氧体中的一员,具有独特磁结构、巨介电常数及多铁性,近年来引起了人们极大的研究兴趣.同时, LuFeO3也是一种窄带隙半导体材料,使其可以作为一种潜在的超声催化剂,但相关报道很少.半导体材料的晶粒尺寸及形貌对其超声催化活性的影响非常大,因此制备出不同晶粒尺寸及形貌的LuFeO3颗粒并研究其超声催化性能具有重要意义.目前LuFeO3的主要制备方法为传统的固相反应法,该法需要反复研磨和高温煅烧使原料彻底反应,而且制备出的颗粒尺寸较大,相互粘连严重,形貌难以控制.在众多纳米材料制备方法中,水热法在调控晶粒尺寸及形貌上具有巨大优势.本课题组曾采用水热法成功制备了单相的LuFeO3颗粒,通过改变NaOH浓度,可以对产物的晶粒尺寸及形貌进行调控.基于此,本文以酸性橙(AO7)、罗丹明B (RhB)、甲基橙(MO)和亚甲基蓝(MB)为目标降解物,考察了水热法所制备的LuFeO3颗粒在超声辐照下的超声催化性能,并系统研究了晶粒尺寸及形貌、无机离子和乙醇对LuFeO3颗粒超声催化活性的影响及LuFeO3颗粒重复利用性能.以对苯二甲酸(TPA)为分子荧光探针,采用光致发光(PL)技术检测在超声辐照下LuFeO3反应液中产生羟基自由基(?OH)的情况,探讨了LuFeO3颗粒的超声催化机理.超声催化反应结果表明,采用水热法制备的LuFeO3颗粒在超声辐照下表现出良好的超声催化活性.在NaOH浓度为0.625 mol/L时制备的LuFeO3颗粒尺寸最小,表现出最好的超声催化活性;经过30 min超声催化反应后,AO7,RhB,MO和MB的超声降解率分别为89%,82%,73%和67%.加入Cl?, NO3?, SO42?, PO43?和HCO3?对LuFeO3颗粒的超声催化活性有抑制作用.向反应液中加入2%(v/v)乙醇后, LuFeO3颗粒在超声辐照下对AO7几乎没有降解,表明?OH在超声催化中起重要作用.重复回收实验结果表明, AO7的降解率随着循环次数增加有所下降,这可能是由于催化剂回收时的损失所致.尽管如此,催化剂仍能保持较高的催化活性,经4次循环后,反应30min时AO7的降解率为65%.PL结果表明, LuFeO3颗粒在超声催化反应中产生了大量的?OH,添加乙醇可以消耗?OH并抑制染料的超声催化降解.由此可见,?OH是超声催化降解RhB的主要活性物种.我们对LuFeO3导带和价带的电位进行了估算,从热力学角度对LuFeO3颗粒超声催化降解染料的机理做出了初步解释.
LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as‐synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AO7), rhodamine B (RhB), methyl orange (MO), and meth‐ylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar‐like particles with lengths of~3μm and widths of~1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89%after 30 min of sonocatalysis. The effects of inorganic anions such as Cl?, NO3?, SO42?, PO43?, and HCO3? on the sonocatalysis efficiency were investigated. Hydroxyl radicals (?OH) detected by fluorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic‐irradiated LuFeO3 particles. The addition of ethanol, which acts as a?OH scavenger, leads to quenching of ?OH radicals and a simultaneous decrease in the dye degrada‐tion. This suggests that?OH is the dominant active species responsible for the dye degradation.
参考文献
[1] | Leong T;Ashokkumar M;Kentish S .[J].Acoust Aust,2011,39(2):54. |
[2] | Xu H X;Eddingsaas N C;Suslick K S .[J].Journal of the American Chemical Society,2009,131:6060. |
[3] | Juretic H;Montalbo-Lomboy M;Van Leeuwen J;Cooper W J Gre-well D .[J].Ultrasonics Sonochemistry,2015,22:600. |
[4] | Antonopoulou M;Evgenidou E;Lambropoulou D;Konstantinou I .[J].Water Research,2014,53:215. |
[5] | Chave T;Navarro N M;Pochon P;Perkas N Gedanken A Nikitenko S I .[J].Catalysis Today,2015,241:55. |
[6] | Zhu L;Jo S B;Ye S;Ullah K Oh W C .[J].催化学报,2014,35:1825. |
[7] | Khataee A;Soltani R D C;Karimi A;Joo S W .[J].Ultrasonics Sonochemistry,2015,23:219. |
[8] | Zhang S N;Tian H F;Zhang S J;Wu X Q Song L M Ye J Y Wei Q W .[J].Journal of the American Ceramic Society,2013,96:3536. |
[9] | He P Z;Song L M;Wu X Q;Tian H F Wei Q W Ye J Y Zhang L G Cui Y Y Wang Y B .[J].Ultrasonics Sonochemistry,2014,21:136. |
[10] | Wu Y;Song L M;Zhang S J;Wu X Q Zhang S N Tian H F Ye J Y .[J].CATALYSIS COMMUNICATIONS,2013,37:14. |
[11] | Zhao H;Zhang G M;Zhang Q L .[J].Ultrasonics Sonochemistry,2014,21:991. |
[12] | Song L M;Li Y M;He P Z;Zhang S J Wu X Q Fang S Shan J J Sun D L .[J].Ultrasonics Sonochemistry,2014,21:1318. |
[13] | Zhang K;Oh W C .[J].Bulletin of the Korean Chemical Society,2010,31:1589. |
[14] | Wang J;Guo B D;Zhang X D;Zhang Z H Han J T Wu J .[J].Ultrasonics Sonochemistry,2005,12:331. |
[15] | White R L .[J].Journal of Applied Physics,1969,40:1061. |
[16] | Zhu W K;Pi L;Tan S;Zhang Y H .[J].Applied Physics Letters,2012,100:052407. |
[17] | Zhang L;Chen X M .[J].Solid State communications,2009,149:1317. |
[18] | Wang W B;Zhao J;Gai Z Balke N Chi M F Lee H N Tian W Zhu L Y Cheng X M Keavney D J Yi J Y Ward T Z Snijders P C Christen H M Wu W D Shen J Xu X S .[J].Physical Review Letters,2013,110:237601. |
[19] | Chowdhury U;Goswami S;Bhattacharya D;Ghosh J Basu S Neogi S .[J].Applied Physics Letters,2014,105:052911. |
[20] | Adams D J;Amadon B .[J].Physical Review B:Condensed Matter,2009,79:115114. |
[21] | Zhou M;Yang H;Xian T;Ma J Y Zhang H M Feng W J Wei Z Q Jiang J L .[J].Journal of Alloys and Compounds,2014,617:855. |
[22] | Zhou M;Yang H;Xian T;Li R S Zhang H M Wang X X .[J].Journal of Hazardous Materials,2015,289:149. |
[23] | Ishibashi K I;Fujishima A;Watanabe T;Hashimoto K .[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,134:139. |
[24] | Wang S F;Yang H;Xian T;Liu X Q .[J].CATALYSIS COMMUNICATIONS,2011,12:625. |
[25] | Wang K;Zhang J Y;Lou L P;Yang S Y Chen Y X .[J].J Photochem Photo-biol A,2004,165:201. |
[26] | Burns R A;Crittenden J C;Hand D W;Selzer V H Sutter L L Salman S R .[J].Journal of Environmental Engineering,1999,125:77. |
[27] | Xian T;Yang H;Di L J;Chen X F Dai J F .[J].JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY,2013,66:324. |
[28] | Morrison S R.Electrochemistry at Semiconductor and Oxidized Metal Electrodes[M].New York:Plenum Press,1980:72. |
[29] | Andersen T;Haugen H K;Hotop H .[J].Journal of Physical and Chemical Reference Data,1999,28:1511. |
[30] | Davis V T;Thompson J S .[J].J Phys B,2001,34:L433. |
[31] | Tachikawa T;Fujitsuka M;Majima T .[J].J Phys Chem C,2007,111:5259. |
[32] | Jiang H Y;Cheng K;Lin J .[J].Physical Chemistry Chemical Physics,2012,14:12114. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%