由溶胶-凝胶法制得的Ni-La化合物经热分解制备了纳米尺度NiLa2O4尖晶石,在750 oC焙烧后形成了结晶良好的尖晶石结构.采用差热分析、X射线衍射、透射电镜、扫描电镜和粒度分布分析等手段表征了该尖晶石的物理化学性质.结果表明,该纳米颗粒有规则的外形和确定的晶面,由平均粒径为40 nm的规整半球晶粒组成.精修的晶胞参数a=3.861205?和c=12.6793?.在NaBH4选择还原亚胺制相应仲胺的反应中,该新型纳米NiLa2O4尖晶石可用作高效多相催化剂,得到了较高的产物产率.所有反应可在室温和相对较短的时间内完成.在优化的反应条件下,均可得到带有不同芳基的,包括带有吸电子和供电子基团的仲胺.该催化剂回收简便,重复使用4次,其催化活性未见明显下降.
Nano-sized NiLa2O4 spinel was produced by thermal decomposition of Ni–La compounds via a sol-gel method. The well-crystallized spinel structure was formed after calcination at 750 °C. The physicochemical properties of the spinel were investigated using differential thermal analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and particle size dis-tribution analysis. The results show that the nanoparticles have regular shapes with well-defined crystal faces and consist of uniform quasi-spherical crystallites of average size 40 nm. The refined unit cell parameters are a=3.861205 ? and c=12.6793 ?. This new nano-sized NiLa2O4 spinel is an efficient heterogeneous catalyst for the selective conversion of imines to the corresponding second-ary amines in the presence of NaBH4 as a reducing agent, in good to excellent yields. All the reac-tions were completely chemoselective at room temperature and had relatively short reaction times. Secondary amines with different aryl groups, including those bearing electron-withdrawing or electron-donating groups, were obtained under the optimum reaction conditions. The catalyst was readily recovered and was recycled four times with no significant loss of catalytic activity.
参考文献
[1] | Singh B;Guru S K;Sharma R;Bharate S S,Khan I A,Bhushan S,Bharate S B,Vishwakarma R A .[J].Bioorg Med Chem Lett,2014,24:4865. |
[2] | Logan R;Kong A C;Krise J P .[J].J Pharm Sci,2014,103:3287. |
[3] | Zhang Y;Quan Z J;Gong H P;Da Y X,Zhang Z,Wang X C .[J].Tetrahe-dron,2015,71:2113. |
[4] | Bujnowski K;Synoradzki L;Zevaco T A;Dinjus E,Au-gustynowicz-Kopec E,Napiorkowska A .[J].Tetrahedron,2015,71:158. |
[5] | Alsryfy A H;Mosaa Z A;Alrazzak N .[J].Res J Pharm Biol Chem Sci,2015,6:798. |
[6] | Gawaskar S;Schepmann D;Bonifazi A;Wünsch B .[J].Bioorg Med Chem,2014,22:6638. |
[7] | Abdelmagid AF.;Harris BD.;Maryanoff CA.;Shah RD.;Carson KG. .REDUCTIVE AMINATION OF ALDEHYDES AND KETONES WITH SODIUM TRIACETOXYBOROHYDRIDE - STUDIES ON DIRECT AND INDIRECT REDUCTIVE AMINATION PROCEDURES[J].The Journal of Organic Chemistry,1996(11):3849-3862. |
[8] | Kascheres A.;Rodrigues RAF. .INTRAMOLECULAR INTERCEPTION OF REACTIVE INTERMEDIATES IN THE RANEY NICKEL GENERATED IN SITU REDUCTION OF OXIMES - SYNTHETIC AND MECHANISTIC IMPLICATIONS[J].Tetrahedron,1996(40):12919-12930. |
[9] | Liu P S .[J].J Org Chem,1987,52:4717. |
[10] | Shawe T T;Sheils C J;Gray S M;Conard J L .[J].J Org Chem,1994,59:5841. |
[11] | Baruah B;Dutta M P;Boruah A;Prajapati D,Sandhu J S.[M].Synlett,1999:409. |
[12] | Kano S;Tanaka Y;Sugino E;Hibino S.[M].Synthesis,1980:695. |
[13] | Hoffman C;Tanke R S;Miller M J .[J].J Org Chem,1989,54:3750. |
[14] | Camps P.;Gomez E.;Munoz-Torrero D.;Font-Bardia M.;Solans X. .Synthesis of diastereomieric 13-amido-substituted huprines as potential high affinity acetylcholinesterase inhibitors[J].Tetrahedron,2003(23):4143-4151. |
[15] | Barbry D.;Champagne P. .REDUCTION OF O-ACYL OXIMES WITH SODIUM BOROHYDRIDE/IODINE SYSTEM[J].Synthetic Communications,1995(22):3503-3507. |
[16] | Itsuno S;Sakurai Y;Shimizu K;Ito K.[M].J Chem Soc,Perkin Trans 1,1990:1859. |
[17] | Itsuno S;Sakurai Y;Shimizu K.[M].Ito K.J Chem Soc,Perkin Trans 1,1989:1548. |
[18] | Aniz C U;Nair T D R .[J].Open J Phys Chem,2011,1:124. |
[19] | Ghose J;Murthy K S R C .[J].J Catal,1996,162:359. |
[20] | Jiang J;Yan M Y .[J].Mater Lett,2007,61:4276. |
[21] | Yang J;Peng J;Liu K C;Guo R,Xu D L,Jia J P .[J].J Hazard Mater,2007,143:379. |
[22] | Lv S S;Chen X G;Ye Y;Yin S H,Cheng J P,Xia M S .[J].J Hazard Mater,2009,171:634. |
[23] | Zhou Z;Yan J;Wang Y X .[J].Chem,1998,4:23. |
[24] | Yang G Q;Han B;Sun Z T;Yan L M,Wang X Y .[J].Dyes Pigm,2002,55:9. |
[25] | Sepelak V;Becker K D .[J].Mater Sci Eng A,2004,A375-A377:861. |
[26] | Khosravi I;Yazdanbakhsh M;Goharshadi E K;Youssefi A .[J].Mater Chem Phys,2011,130:1156. |
[27] | Yazdanbakhsh M;Khosravi I;Mashhoori M S;Rahimizadeh M,Shiri A,Bakavoli M .[J].Mater Res Bull,2012,47:413. |
[28] | Yazdanbakhsh M;Khosravi I;Goharshadi E K;Youssefi A .[J].J Hazard Mater,2010,184:684. |
[29] | de Lima S P;Vicentini V;Fierro J L G;Rangel M C .[J].Catal Today,2008,133-135:925. |
[30] | Khosravi I;Yazdanbakhsh M;Eftekhar M;Haddadi Z .[J].Mater Res Bull,2013,48:2213. |
[31] | Khosravi I;Eftekhar M;Bayraq S S .[J].Synth React Inorg Met Org Nano-Metal Chem,2014,44:227. |
[32] | Savoia D;Trombini C;Umani-Ronchi A .[J].J Org Chem,1978,43:2907. |
[33] | de Nie-Sarink M J;Pandit U K .[J].Tetrahedron Lett,1979,20:2449. |
[34] | Kojima Y;Suzuki K;Fukumoto K;Sasaki M,Yamamoto T,Kawai Y,Hayashi H .[J].Int J Hydrogen Energy,2002,27:1029. |
[35] | Carey F A;Sundberg R J.Advanced Organic Chemistry, Part A:Structure and Mechanisms[M].New York:Springer,2007:169. |
[36] | Fernandes V R;Pinto A M F R;Rangel C M .[J].Int J Hydrogen Energy,2010,35:9862. |
[37] | Cho BT;Kang SK .Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions[J].Tetrahedron,2005(24):5725-5734. |
[38] | Kazemi F;Kiasat A R;Sarvestani E .[J].Chin Chem Lett,2008,19:1167. |
[39] | Yang Y H;Liu S X;Li J Z;Tian X,Zhen X L,Han J R .[J].Synth Commun,2012,42:2540. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%