作为一种重要的化学中间体,对氯苯胺广泛应用于杀虫剂、染料和医药等.考虑到对环境的影响,目前合成对氯苯胺最为有效的方法仍然是对氯硝基苯的直接加氢过程.该反应的主要难点在于要做到严格的不脱氯,即在反应过程中不能生成苯胺.传统上所采用的雷尼Ni催化剂虽然活性很高,但对氯苯胺的选择性较低,因此通常情况下需要向反应体系中加入抑制剂以提高产物选择性.贵金属也可用作催化剂,但其选择性也不高,且价格高昂.采用适当方法调节金属-载体间相互作用或使用不同金属的合金也可来提高反应的选择性.不过总体而言,利用简易的催化剂在高转化率条件下获得高的对氯苯胺选择性依然是一个挑战.氮化碳(CN)作为一种近年来被广泛研究的材料,其结构主要由以sp2共价键相连接的C和N原子构成,因而具有很多独特多变的性质.它的电子性质容易受到与其接触材料性质的影响.当CN与不同材料相互接触时,电子可以在二者之间相互转移.作为一种催化剂, CN在光解水和氧还原等多相催化反应中都表现出非常有趣的性质.这主要归因于其特殊的电子性质和结构性质,例如其费米能级附近的态密度会随着N含量的增加而增加,并形成一种类金属的材料. CN表面所拥有的丰富的缺陷位和N原子为电子的局域和锚定提供了位点,因而它可能用作金属催化剂的载体,而金属与CN之间形成的异质结已经被证明可以提高其光解水产氢的性能.研究表明,当某些金属与CN发生接触时,两者之间产生很强的相互作用,从而为我们调控CN的性质提供了一种可能的途径.本课题组曾通过利用CN包裹高度分散于Al2O3表面的Ni,发现在制备过程中催化剂中的Ni被还原到了金属态,且与CN之间形成了电子相互作用,从而成功地调节了CN的电子性质和能带结构.本文将这种纳米复合材料用于对氯硝基苯加氢制备对氯苯胺反应中.结果发现,催化剂中的Ni在与CN相互作用时将电子转移到CN上,使得CN具备了吸附和活化氢的能力.氢氘交换实验发现, CN表面化学吸附氢的交换温度在516 K左右,含量约为156μmol/g,氢的吸附密度约在0.65/nm2.考虑到CN中的N含量,化学吸附的H和N物种的比例约在1/27.当用于对氯硝基苯加氢反应时,虽然该催化剂的活性相对较低,但产物选择性很高,对氯硝基苯转化率达到96.8%时,对氯苯胺的选择性仍在99.9%以上.而对于Ni/Al2O3催化剂,虽然其活性很高,但对氯苯胺选择性却较低,且随着对氯硝基苯转化率的增加,体系中苯胺的含量逐渐上升,表明本文所采用的催化剂具有独特的很高的产物选择性.这可能与其相对较弱的加氢活性以及催化剂表面被CN包裹,缺乏可以吸附对氯硝基苯的金属位点有关. Ni调节的CN所构成的纳米复合材料有望用作选择加氢等一系列反应的温和催化剂.
A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro‐genation of p‐chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/Al2O3 but the selectivity towards p‐chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption of p‐chloronitrobenzene, which prevents the C–Cl bond from breaking.
参考文献
[1] | Fan G Y;Zhang L;Fu H Y;Yuan M L Li R X Chen H Li X J .[J].CATALYSIS COMMUNICATIONS,2010,11:451. |
[2] | Shen J H;Chen Y W .[J].Journal of Molecular Catalysis A:Chemical,2007,273:265. |
[3] | Baumeister P;Blaser H U;Scherrer W .[J].Studies in surface science and catalysis,1991,59:321. |
[4] | Mo M;Han L;Lv J G;Zhu Y Peng L M Guo X F Ding W P .[J].Chemistry Communications,2010,46:2268. |
[5] | Liang M H;Wang X D;Liu H Q;Liu H C Wang Y .[J].Journal of Catalysis,2008,255:335. |
[6] | Liu H Q;Liang M H;Xiao C;Zheng N Feng X H Liu Y Xie J L Wang Y .[J].Journal of Molecular Catalysis A:Chemical,2009,308:79. |
[7] | Cárdenas-Lizana F;Gómez-Quero S;Keane M A .[J].CATALYSIS COMMUNICATIONS,2008,9:475. |
[8] | Han X X;Chen Q;Zhou R X .[J].Journal of Molecular Catalysis A:Chemical,2007,277:210. |
[9] | Han X D;Zhou R X;Lai G H;Zheng X M .[J].Catalysis Today,2004,93:433. |
[10] | Liu A Y;Cohen M L .[J].SCIENCE,1989,245:841. |
[11] | Kaner R B;Gilman J J;Tolbert S H .[J].SCIENCE,2005,308:1268. |
[12] | Lee J S;Wang X Q;Luo H M;Baker G A Dai S .[J].Journal of the American Chemical Society,2009,131:4596. |
[13] | Wang E G .[J].Progress in Material Science,1997,41:241. |
[14] | Wang Y;Wang X C;Antonietti M .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:68. |
[15] | Teter D M;Hemley R J .[J].SCIENCE,1996,271:53. |
[16] | Jin X;Balasubramanian V V;Selvan Sahthievel T;Sawant Dhanashri P Chari Murugulla A Lu G Q Vinu A .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2009,48:7884. |
[17] | Wang X C;Maeda K;Thomas A;Takanabe K Xin G Carlsson J M Domen K Antonietti M .[J].NATURE MATERIALS,2009,8:76. |
[18] | Zhang J;Grzelczak M;Hou Y D;Maeda K Domen K Fu X Z Anto-nietti M Wang X C .[J].Chem Sci,2012,3:443. |
[19] | Cui Y J;Huang J H;Fu X Z;Wang X C .[J].Catal Sci Technol,2012,2:1396. |
[20] | Zheng Y;Jiao Y;Chen J;Liu J Liang J Du A J Zhang W M Zhu Z H Smith S C Jaroniec M Lu G Q Qiao S Z .[J].Journal of the American Chemical Society,2011,133:20116. |
[21] | Gong Y T;Zhang P F;Xu X;Li Y Li H R Wang Y .[J].Journal of Catalysis,2013,297:272. |
[22] | Gong Y T;Li M M;Li H R;Wang Y .[J].Green Chemistry,2015,17:715. |
[23] | Wang Y;Yao J;Li H R;Su D S Antonietti M .[J].Journal of the American Chemical Society,2011,133:2362. |
[24] | Bian S W;Ma Z;Song W G .[J].J Phys Chem C,2009,113:8668. |
[25] | Li X H;Wang X C;Antonietti M .[J].Chem Sci,2012,3:2170. |
[26] | Xiao P;Zhao Y X;Wang T;Zhan Y Y Wang H H Li J L Thomas A Zhu J J .[J].Chemistry-A European Journal,2014,20:2872. |
[27] | Gong Y T;Li M M;Wang Y .[J].ChemSusChem,2015,8:931. |
[28] | Wang Y;Zhang J S;Wang X C;Antonietti M Li H R .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2010,49:3356. |
[29] | Wang Y;Li H R;Yao J;Wang X C Antonietti M .[J].Chem Sci,2011,2:446. |
[30] | Wang X C;Chen X F;Thomas A;Fu X Z Antonietti M .[J].Advanced Materials,2009,21:1609. |
[31] | Lin Z Z;Wang X C .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2013,52:1735. |
[32] | Zhang Y J;Mori T;Ye J H;Antonietti M .[J].Journal of the American Chemical Society,2010,132:6294. |
[33] | Fu T;Wang M;Cai W M;Cui Y M Gao F Peng L M Chen W Ding W P .[J].ACS Catal,2014,4:2536. |
[34] | Qiu Y;Gao L.[J].Chemistry Communications,2003:2378. |
[35] | Hellgren N;Guo J H;Luo Y;S?the C Agui A Kashtanov S NordgrenJ?gren H Sundgren J E .[J].THIN SOLID FILMS,2005,471:19. |
[36] | Arrigo R;Havecker M;Schlogl R;Su D S.[J].Chemistry Communications,2008:4891. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%