近年来,氢能作为清洁可再生新型能源越来越受到人们关注.然而,氢气储存和运输困难,制约了其广泛利用.因此,寻找一种高效的原位在线制氢技术成为解决这一难题的重要方案之一.二甲醚作为氢的载体,具有高H/C比、高能量密度、无毒和无致癌性等优点,而且二甲醚的物理性质与液化石油气(LPG)相类似,燃烧时不会产生污染性气体,且工业上已实现大规模生产.通过重整技术,可以使二甲醚有效地转化为H2.目前的重整技术主要包括部分氧化重整、自热重整、干重整以及水蒸气重整(SR).其中二甲醚水蒸气重整(DME SR)技术具有很高的氢气产率,被认为是一种非常有前途的在线制氢技术.
二甲醚水蒸气重整反应分两步进行,第一步是固体酸催化剂催化的二甲醚水解反应,第二步是金属催化剂催化的甲醇水蒸气重整反应.其中二甲醚水解反应是整个反应的控速步骤.g-Al2O3作为一种最常用的固体酸催化剂,因其在二甲醚水蒸气重整反应中的良好活性和稳定性,以及很少的副反应等优点,得到了国内外研究者的普遍青睐.但是,g-Al2O3催化二甲醚水解反应的温度较高(300–400 oC),极易导致用于重整的铜基催化剂烧结和失活.与g-Al2O3相比, H型分子筛催化剂(如HZSM-5)酸性较强,酸性位较多,催化二甲醚水解反应的温度要低得多(<300 oC).然而HZSM-5含有的强酸位在二甲醚水蒸气重整过程中极易导致催化剂因积碳而失活.因此,有必要对HZSM-5分子筛进行改性,去除不必要的强酸位,以降低积碳,提高催化剂的活性和稳定性.
本文利用HZSM-5良好的离子交换能力,在不改变分子筛骨架结构的前提下,通过一种简单的浸渍法制备了一系列不同P含量的P改性HZSM-5催化剂,并分别将其与传统的CuO-ZnO-Al2O3催化剂机械混合用于二甲醚水蒸气重整制氢.详细研究了P改性对HZSM-5分子筛酸性以及P-HZSM-5/CuO-ZnO-Al2O3混合催化剂二甲醚水蒸气重整制氢活性的影响.与未改性的HZSM-5相比, P改性的HZSM-5催化剂在重整反应中表现出更高的CO2选择性和更好的催化稳定性.通过N2吸附-脱附、X射线衍射(XRD)、程序升温氧化(TPO)、氨程序升温脱附(NH3-TPD)、吡啶红外光谱(IR)和31P魔角旋转核磁共振光谱(MAS NMR)等技术对催化剂进行了表征. NH3-TPD结果表明, P改性可以显著影响HZSM-5的酸量和酸强度;随着P含量的增加,催化剂的强酸位密度明显降低,而弱酸量变化不大;当P含量达到5%时,催化剂的强酸量几乎消失;进一步增加P含量,催化剂的弱酸量也迅速减少. TPO等分析结果表明,积碳是导致催化剂失活的主要原因.5%P改性的HZSM-5催化剂由于其强酸位的消失,在催化反应中表现出更好的稳定性(与未改性的HZSM-5相比). IR结果显示,随着P含量的增加,催化剂的L酸量迅速减少,而B酸量变化相对缓慢.结合31P MAS NMR, NH3-TPD及IR表征结果,提出了P改性对HZSM-5酸性修饰的可能机理.
Dimethyl ether steam reforming (DME SR) was catalyzed by a CuO-ZnO-Al2O3 (CuZnAlO) catalyst mixed with P-modified HZSM-5 for the production of H2. The effect of P modification on the acidity and activity of the P-HZSM-5/CuZnAlO mixed catalyst for DME SR was investigated. P-HZSM-5/CuZnAlO gave a higher CO2 selectivity and also higher stability during DME SR compared to the mixed catalyst with HZSM-5. N2 desorption, X-ray diffraction, temperature-programmed oxidation (TPO), NH3 temperature-programmed desorption (NH3-TPD), Fourier transform infrared spectroscopy (FT-IR), and solid-state 31P magic angle spinning nuclear magnetic resonance (31P MAS NMR) were used for catalyst characterization. NH3-TPD results showed that both the acid quantity and strength of HZSM-5 were significantly changed after P modification. With increased P content, the density of strong acid sites decreased, while the weak acid sites changed little. TPO results indi-cated that catalyst deactivation was mainly caused by the deposition of coke. The catalyst with 5%P exhibited much better stability than the parent HZSM-5 due to the disappearance of strong acid sites after P modification. The FT-IR spectra of pyridine adsorption clearly revealed that with in-creased P content, there was an obvious decrease of Lewis acid sites and slight decrease of Br?nsted acid sites. From the results of 31P MAS NMR, NH3-TPD and FT-IR of adsorbed pyridine, a description of the effect of phosphorus modification on HZSM-5 was proposed.
参考文献
[1] | Oriňáková R;Oriňák A .[J].Fuel,2011,90:3123. |
[2] | 齐随涛,李迎迎,岳佳琪,陈昊,伊春海,杨伯伦.活性炭负载Pt-Ni双金属催化剂上十氢化萘脱氢[J].催化学报,2014(11):1833-1839. |
[3] | Huang Z M;Su A;Hsu C J;Liu Y C .[J].Fuel,2014,122:76. |
[4] | Semelsberger T A;Borup R L;Greene H L .[J].J Power Sources,2006,156:497. |
[5] | Faungnawakij K;Tanaka Y;Shimoda N;Fukunaga T,Kawashima S,Kikuchi R,Eguchi K .[J].Appl Catal A,2006,304:40. |
[6] | Yan C F;Hai H;Hu R R;Guo C Q,Huang S L,Li W B,Wen Y .[J].Int J Hydrogen Energy,2014,39:18625. |
[7] | Zhang Q;Fan F Y;Xu G M;Ye D J,Wang W H,Zhu Z B .[J].Int J Hydrogen Energy,2013,38:10305. |
[8] | Faungnawakij K;Kikuchi R;Matsui T;Fukunaga T,Eguchi K .[J].Appl Catal A,2007,333:114. |
[9] | Vicente J;Ere?a J;Oar-Arteta L;Olazar M,Bilbao J,Gayubo A G .[J].Ind Eng Chem Res,2014,53:3462. |
[10] | Ouyang J;Kong F X;Su G D;Hu Y C,Song Q L .[J].Catal Lett,2009,132:64. |
[11] | Tago T;Konno H;Sakamoto M;Nakasaka Y,Masuda T .[J].Appl Catal A,2011,403:183. |
[12] | Pires J;Fernandes A C;Duraiswami D .[J].催化学报,2014,35:1492. |
[13] | 杨琦,张海涛,孔猛,包秀秀,费金华,郑小明.多级孔ZSM-5分子筛的合成及其在甲醇脱水制二甲醚反应中的应用[J].催化学报,2013(08):1576-1582. |
[14] | Zhang D S;Wang R J;Yang X X .[J].Catal Lett,2008,124:384. |
[15] | Zhang W G;Yu D H;Ji X J;Huang H .[J].Green Chem,2012,14:3441. |
[16] | Zhan N N;Hu Y;Li H;Yu D H,Han Y W,Huang H .[J].Catal Commun,2010,11:633. |
[17] | Long X;Zhang Q J;Liu Z T;Qi P,Lu J,Liu Z W .[J].Appl Catal B,2013,134-135:381. |
[18] | Bigey C;Su B L .[J].J Mol Catal A,2004,209:179. |
[19] | Damodaran, K;Wiench, JW;de Menezes, SMC;Lam, YL;Trebosc, J;Amoureux, JP;Pruski, M .Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy[J].Microporous and Mesoporous Materials,2006(1/3):296-305. |
[20] | Jang, H.-G.;Min, H.-K.;Hong, S.B.;Seo, G..Tetramethylbenzenium radical cations as major active intermediates of methanol-to-olefin conversions over phosphorous-modified HZSM-5 zeolites[J].Journal of Catalysis,2013:240-248. |
[21] | Zhuang JQ;Ding M;Gang Y;Yan ZM;Liu XM;Liu XC;Han XW;Bao XH;Peng X;Liu ZM .Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J].Journal of Catalysis,2004(1):234-242. |
[22] | Vicente J;Gayubo A G;Ere?a J;Aguayo A T,Olazar M,Bilbao J .[J].Appl Catal B,2013,130-131:73. |
[23] | Jiang G Y;Zhang L;Zhao Z;Zhou X Y,Duan A J,Xu C M,Gao J S .[J].Appl Catal A,2008,340:176. |
[24] | Weber R W;M?ller K P;O'Connor C T .[J].Microporous Mesoporous Mater,2000,35-36:533. |
[25] | Barzetti T;Selli E;Moscotti D;Forni L .[J].J Chem Soc Faraday Trans,1996,92:1401. |
[26] | Takahara I;Saito M;Inaba M;Murata K .[J].Catal Lett,2005,105:249. |
[27] | 田玲,李建伟,李英霞,陈标华.磷改性MCM-22分子筛上苯与 1-十二烯烷基化合成十二烷基苯[J].催化学报,2008(09):889-894. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%