研究发现微生物燃料电池从启动到稳定运行的过程中往往存在一种现象,就是在高电流密度下,微生物燃料电池的输出电压会出现逆转,从而限制了微生物燃料电池的规模化应用,以及它在污废水处理、脱盐等方面的功能.
前期研究发现,微生物燃料电池的性能逆转现象与阳极材料的电容性能有关.电极材料的电容越大,越有利于微生物燃料电池的产电性能稳定,换言之,阳极材料电容不足导致产电性能逆转.但是超级电容活性炭的制作工艺繁琐,成本高,且导电性弱,不能满足微生物燃料电池的应用需求.炭黑的导电能力强、化学稳定性高、成本低,但作为微生物燃料电池的阳极则产生产电性能逆转现象.
化学修饰(如酸、碱活化或者添加具有赝电容性质的金属氧化物等)可以提高材料的电容性能.低温条件(80 oC)下,对低电容材料—炭黑进行HNO3和KOH的化学活化处理,并在此基础上,进一步用5%Fe3O4修饰,采用辊压工艺,以质量分数为60%的聚四氟乙烯乳液为粘结剂,制作微生物燃料电池的阳极,与空气阴极构建单室微生物燃料电池系统.采用傅里叶变换红外光谱(FTIR)、比表面积测试、材料表面pH和X射线能量分析光谱(EDX)等手段表征炭黑活化前后的物理、化学性质;接触角润湿性测试表征活化前后电极表面的亲疏水性.电化学循环伏安法测试活化前后,电极的电子存储能力.
与蒸馏水的pH相比较,材料表面pH分析表明炭黑材料经化学活化处理后,其表面pH无明显变化; FTIR和EDX测试表明化学活化处理使得炭黑表面引入含O(N)官能团;吸附-脱附曲线分析表明化学活化后,炭黑的比表面积减小,微孔与介孔的体积比增加;接触角测试表明炭黑阳极活化处理后,电极表面亲水性增加;循环伏安测试证实,化学活化后的炭黑阳极电容得到0.1–0.8 F/cm2的增长.结合燃料电池的产电性能测试,发现只有当炭黑阳极电容不小于1.1 F/cm2时,微生物燃料电池的产电逆转现象才会消失.炭黑阳极的化学活化方法为微生物燃料电池的性能稳定提供了一种简便、低成本的方法.
The poor stability of the current output in microbial fuel cells (MFCs) inhibits its development and application on a large scale. In this work, a carbon black (CB) MFC anode was chemically activated using HNO3 and KOH as pretreatment agents at low temperature, and further modification was made by Fe3O4 addition to the host CB matrix. The enhanced anodic capacitance contributes to a steady power output with neither overshoot nor undershoot below 1.1 F/cm2. This resulted from the introduction of oxygen(nitrogen)-associated functionalities and the improvement of the surface wettability by the activation treatment. The chemical modification of a CB anode provides a feasible way to optimize power production and anodic capacitance in MFCs.
参考文献
[1] | Lü Z S;Xie D H;Li F S;Hu Y,Wei C H,Feng C H .[J].J Power Sources,2014,246:642. |
[2] | Wang, H. M.;Ren, Z. Y. J. .A comprehensive review of microbial electrochemical systems as a platform technology.[J].Biotechnology Advances: An International Review Journal,2013(8):1796-1807. |
[3] | Feng C H;Li F B;Sun K W;Liu Y Y,Liu L,Yue X J,Tong H .[J].Bioresour Technol,2011,102:1131. |
[4] | Kelly P T;He Z .[J].Bioresour Technol,2014,153:351. |
[5] | Huang L P;Yao B L;Wu D;Quan X .[J].J Power Sources,2014,259:54. |
[6] | Rozendal R A;Leone E;Keller J;Rabaey K .[J].Electrochem Commun,2009,11:1752. |
[7] | Kim B H;Chang I S;Gil G C;Park H S,Kim H J .[J].Biotechnol Lett,2003,25:541. |
[8] | Chen S S;Liu G Z;Zhang R D;Qin B Y,Luo Y .[J].Environ Sci Technol,2012,46:2467. |
[9] | Peng X H;Yu H;Yu H B;Wang X .[J].Bioresour Technol,2013,138:353. |
[10] | Hong Y Y;Call D F;Werner C M;Logan B E .[J].Biosen Bioelectron,2011,28:71. |
[11] | Watson, V.J.;Logan, B.E. .Analysis of polarization methods for elimination of power overshoot in microbial fuel cells[J].Electrochemistry communications,2011(1):54-56. |
[12] | Ieropoulos I;Winfield J;Greenman J .[J].Bioresour Technol,2010,101:3520. |
[13] | Winfield, J.;Ieropoulos, I.;Greenman, J.;Dennis, J. .The overshoot phenomenon as a function of internal resistance in microbial fuel cells[J].Bioelectrochemistry,2011(1):22-27. |
[14] | Huang W;Zhang Y M;Bao S X;Cruz R,Song S X .[J].Desalination,2014,340:67. |
[15] | Kikuchi K;Yasue T;Yamashita R;Sakuragawa S,Sudoh M,Itagaki M .[J].Electrochemistry,2013,81:828. |
[16] | Carriazo D;Gutiérrez M C;Picó F;Rojo J M,Fierro J L G,Ferrer M L,del Monte F .[J].ChemSusChem,2012,5:1405. |
[17] | Kaludjerovi?B V;Jovanovi?V M;Stevanovi?S I;Bogdanov?D .[J].Ultrason Sonochem,2014,21:782. |
[18] | Duteanu N;Erable B;Kumar S M S;Ghangrekar M M,Scott K .[J].Bioresour Technol,2010,101:5250. |
[19] | Shi W H;Zhu J X;Sim D H;Tay Y Y,Lu Z Y,Zhang X J,Sharma Y,Srinivasan M,Zhang H,Hng H H,Yan Q Y .[J].J Mater Chem,2011,21:3422. |
[20] | Peng X H;Yu H B;Wang X;Zhou Q X,Zhang S J,Geng L J,Sun J W,Cai Z .[J].Bioresour Technol,2012,121:450. |
[21] | Peng X H;Yu H B;Wang X;Gao N,Geng L J,Ai L N .[J].J Power Sources,2013,223:94. |
[22] | Jin T;Zhou L;Luo J M;Yang J,Zhao Y Y,Zhou M H .[J].J Chem Technol Biotechnol,2013,88:2075. |
[23] | Wang X;Cheng S A;Feng Y J;Merrill M D,Saito T,Logan B E .[J].Environ Sci Technol,2009,43:6870. |
[24] | Pognon G;Brousse T;Bélanger D .[J].Carbon,2011,49:1340. |
[25] | Yan R;Chin T;Ng Y L;Duan H Q,Liang D T,Tay J H .[J].Environ SciTechnol,2004,38:316. |
[26] | Chen Z H;Li K X;Zhang P;Pu L T,Zhang X,Fu Z .[J].Chem Eng J,2015,259:820. |
[27] | Xu F;Cai R J;Zeng Q C;Zou C,Wu D C,Li F,Lu X E,Liang Y R,Fu R W .[J].J Mater Chem,2011,21:1970. |
[28] | Kierzek K;Frackowiak E;Lota G;Gryglewicz G,Machnikowski J .[J].Electrochim Acta,2004,49:515. |
[29] | Dinh T M;Pech D;Brunet M;Achour A .[J].J Phys:Conference Series,2013,476:012106/1. |
[30] | Yoo H;Min M;Bak S;Yoon Y,Lee H .[J].J Mater Chem A,2014,2:6663. |
[31] | Deeke A;Sleutels T H J A;Hamelers H V M;Buisman C J N .[J].Environ Sci Technol,2012,46:3554. |
[32] | Kano T;Suito E;Hishida K;Miki N .[J].Jpn J Appl Phys,2012,51:06FK04. |
[33] | Liu M M;Sun J .[J].J Mater Chem A,2014,2:12068. |
[34] | Schrott G D;Bonanni P S;Robuschi L;Esteve-Nunez A,Busalmen J P .[J].Electrochim Acta,2011,56:10791. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%