欢迎登录材料期刊网

材料期刊网

高级检索

利用周期性密度泛函理论研究了SAPO-34分子筛催化转化卤代甲烷制取低碳烯烃反应的碳池主要成分多甲基苯分子的偕甲基化反应。氯甲烷和溴甲烷分子在SAPO-34分子筛内的吸附能分别是–18和–22 kJ/mol,由于氯和溴原子相似的电负性,氯甲烷和溴甲烷分子的吸附能并未被精确区分。以氯甲烷和溴甲烷为甲基化试剂,得到了几种多甲基苯分子的偕甲基化反应能及能垒,结果表明,六甲基苯分子(HMB)的偕甲基化反应为放热反应,而其余甲基苯分子的偕甲基化反应为吸热反应。对于上述两种甲基化试剂,体积最大的HMB均表现出最低的偕甲基化反应能垒,这可能是由于分子筛骨架与多甲基苯分子之间的静电相互作用增强了HMB的反应活性所致。

Periodic density functional theory calculations have been conducted using the DMol3 package to investigate the geminal methylation of a series of methylbenzenes as hydrocarbon pool species trapped within the framework of a catalyst for the conversion of methyl halides to light olefins. The adsorption energies of CH3Cl (–18 kJ/mol) and CH3Br (–22 kJ/mol) into a SAPO-34 catalyst were calculated, and the results revealed that these methylating agents were not being accurately distin-guished because of similarities in the electronegativities of their halogen atoms. The reaction ener-gies and energy barriers were also obtained for the geminal methylation reactions of a series of methylbenzenes using CH3Cl and CH3Br. The results of these calculations suggested that the geminal methylation of hexamethylbenzene (HMB) was exothermic based on the negative reaction energies, whereas the geminal methylation reactions of all of the other methylbenzenes were endothermic. Furthermore, the energy barriers for the geminal methylation of HMB with CH3Cl and CH3Br were lower than those of the other methylbenzenes evaluated in the current study, which indicated that HMB was forming strong electrostatic interactions within the structural framework of the molecu-lar sieves, and that the reactivity of the methylbenzene substrate increased as the number of methyl groups increased.

参考文献

[1] Alvarez-Galvan M C;Mota N;Ojeda M;Rojas S,Navarro R M,Fierro J L G .[J].Catalysis Today,2011,171:15.
[2] Olsbye U;Saure O V;Muddada N B;Bordiga S Lamberti C Nilsen M H Lillerud K P Svelle S .[J].Catalysis Today,2011,171:211.
[3] Zhang D Z;Wei Y X;Xu L;Chang F X Liu Z Y Meng S H Su B L Liu Z M .[J].Microporous and Mesoporous Materials,2008,116:684.
[4] Kong L T;Jiang Z;Zhao J G;Liu J C Shen B X .[J].Catalysis Letters,2014,144:1609.
[5] Kong L T;Shen B X;Zhao J G;Liu J C .[J].Industrial and Engineering Chemistry Research,2014,53:16324.
[6] Zhang A H;Sun S L;Komon Z J A;Osterwalder N Gadewar S Stoimenov P Auerbach D J Stucky G D McFarland E W .[J].Physical Chemistry Chemical Physics,2011,13:2550.
[7] Xu, T.;Zhang, Q.;Song, H.;Wang, Y..Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides[J].Journal of Catalysis,2012:232-241.
[8] Dai W L;Wang C M;Dyballa M;Wu G J Guan N J Li L D Xie Z K Hunger M .[J].ACS Catal,2015,5:317.
[9] Dahl I M;Kolboe S .[J].Journal of Catalysis,1994,149:458.
[10] Wei YX;Zhang DZ;Liu ZM;Su BL .Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR[J].Journal of Catalysis,2006(1):46-57.
[11] Svelle S;Aravinthan S;Bjorgen M;Lillerud KP;Kolboe S;Dahl IM;Olsbye U .The methyl halide to hydrocarbon reaction over H-SAPO-34[J].Journal of Catalysis,2006(2):243-254.
[12] Wei, YX;Zhang, DZ;Chang, FX;Xia, QH;Su, BL;Liu, ZM .Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34: direct insight into the primary conversion with coke deposition[J].Chemical communications,2009(40):5999-6001.
[13] Arstad B;Kolboe S;Swang O .[J].Journal of Physical Chemistry A,2005,109:8914.
[14] Li J Z;Wei Y X;Chen J R;Tian P Su X Xu S T Qi Y Wang Q Y Zhou Y He Y L Liu Z M .[J].Journal of the American Chemical Society,2012,134:836.
[15] Lesthaeghe D;De Sterck B;Van Speybroeck V;Marin G B Waro-quier M .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2007,46:1311.
[16] Olsbye U;Svelle S;Bj?rgen M;Beato P Janssens T V W Joensen F Bordiga S Lillerud K P .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2012,51:5810.
[17] Blaszkowski S R;van Santen R A .[J].Journal of the American Chemical Society,1996,118:5152.
[18] Wang C M;Wang Y D;Xie Z K;Liu Z P .[J].J Phys Chem C,2009,113:4584.
[19] Wang, C.-M.;Wang, Y.-D.;Liu, H.-X.;Xie, Z.-K.;Liu, Z.-P. .Catalytic activity and selectivity of methylbenzenes in HSAPO-34 catalyst for the methanol-to-olefins conversion from first principles[J].Journal of Catalysis,2010(2):386-391.
[20] Lo C;Trout BL .Density-functional theory characterization of acid sites in chabazite[J].Journal of Catalysis,2004(1):77-89.
[21] Bleken, F.;Svelle, S.;Lillerud, K.P.;Olsbye, U.;Arstad, B.;Swang, O. .Thermochemistry of organic reactions in microporous oxides by atomistic simulations: Benchmarking against periodic B3LYP[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,2010(27):7391-7397.
[22] Arstad B;Kolboe S;Swang O .[J].Journal of Physical Chemistry B,2002,106:12722.
[23] Lesthaeghe D;Van Speybroeck V;Waroquier M .[J].Physical Chemistry Chemical Physics,2009,11:5222.
[24] Bj?rgen M;Joensen F;Lillerud K P;Olsbye U Svelle S .[J].Catalysis Today,2009,142:90.
[25] Hereijgers, B.P.C.;Bleken, F.;Nilsen, M.H.;Svelle, S.;Lillerud, K.-P.;Bj?rgen, M.;Weckhuysen, B.M.;Olsbye, U. .Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts[J].Journal of Catalysis,2009(1):77-87.
[26] Olsbye U;Bj?rgen M;Svelle S;Lillerud K P Kolboe S .[J].Catalysis Today,2005,106:108.
[27] Bj?rgen M;Svelle S;Joensen F;Nerlov J Kolboe S Bonino F Pa-lumbo L Bordiga S Olsbye U .[J].Journal of Catalysis,2007,249:195.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%