欢迎登录材料期刊网

材料期刊网

高级检索

在150–210 oC,1.0 MPa氧分压条件下,对催化湿式共氧化法同时去除硝基苯和苯酚进行了研究.与无催化剂共氧化降解苯酚和硝基苯相比,均相催化剂的加入极大提高了苯酚和硝基苯的去除.在所研究的过渡金属催化剂中, Cu2+, Co2+和Ni2+是有效的催化剂,其中Cu2+的催化活性最好.引发剂苯酚的连续加入模式对硝基苯的去除有很大的促进作用,分批加入苯酚的促进作用更明显.在200 oC,以Cu2+为催化剂,苯酚分两次加入,反应1 h,硝基苯去除率达到95%.这种催化共氧化体系以及分批进样引发剂的反应模式对有效去除环境中其它有机污染物提供了一种方法.

The simultaneous wet air oxidation of nitrobenzene (NB) and phenol with homogenous catalyst was carried out in a stainless autoclave in a temperature range of 150–210oC and at a partial oxygen pressure of 1.0 MPa. Compared with the non-catalytic co-oxidation of NB and phenol, the presence of the homogeneous catalyst greatly improved the conversion of both compounds. The transition metal ions Cu2+, Co2+ and Ni2+ were found to be effective catalysts, with Cu2+ affording the best re-sults. How phenol was added to the autoclave was investigated and was found to affect the conver-sion of NB. Adding phenol in smaller portions can help to degrade NB more effectively. As an exam-ple, two additions of phenol with Cu2+ as the homogenous catalyst allowed 95% conversion of NB at 200 °C in 1 h. This catalytic co-oxidation method incorporating the addition of phenol initiator batches therefore provides an alternative and effective means of removing persistent organic pol-lutants from the environment.

参考文献

[1] Mu Y;Yu H Q;Zheng J C;Zhang S J Sheng G P .[J].CHEMOSPHERE,2004,54:789.
[2] Latifoglu A;Gurol M D .[J].Water Research,2003,37:1879.
[3] Li Y P;Cao H B;Liu C M;Zhang Y .[J].Journal of Hazardous Materials,2007,148:158.
[4] 袁进;吕永康;李裕;李进平 .[J].Chin J Catal,2010,31:597.
[5] Restivo J;Rocha R P;Silva A M T;Orfao J J M Pereira M F R Figueiredo J L .[J].催化学报,2014,35:896.
[6] Chamarro E.;Esplugas S.;Marco A. .Use of Fenton reagent to improve organic chemical biodegradability[J].Water research: A journal of the international water association,2001(4):1047-1051.
[7] Contreras S;Rodriguez M;Chamarro E;Esplugas S Casado J .[J].Water Science and Technology,2001,44:39.
[8] Bandy J;Shemer H;Linden K G .[J].ENVIRONMENTAL ENGINEERING SCIENCE,2009,26:973.
[9] Kim K H;Ihm S K .[J].Journal of Hazardous Materials,2011,186:16.
[10] Luck F .[J].Catalysis Today,1999,53:81.
[11] Oller, I.;Malato, S.;Sánchez-Pérez, J.A. .Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review[J].Science of the Total Environment,2011(20):4141-4166.
[12] Suarez-Ojeda M E;Stüber F;Fortuny A;Fabregat A Carrera J Font J .[J].Applied Catalysis B:Environmental,2005,58:105.
[13] Levec J;Pintar A .[J].Catalysis Today,2007,124:172.
[14] Fu J;Kyzas G Z .[J].催化学报,2014,35:1.
[15] Willms R S;Reible D D;Wetzel D M;Harrison D P .[J].Industrial and Engineering Chemistry Research,1987,26:606.
[16] Birchmeier M J;Hill C G;Houtman C J;Atalla R H Weinstock I A .[J].Industrial and Engineering Chemistry Research,2000,39:55.
[17] Oulego P;Collado S;Laca A;Diaz M .[J].Journal of Hazardous Materials,2014,280:570.
[18] Fu D M;Chen J P;Liang X M .[J].CHEMOSPHERE,2005,59:905.
[19] Fu D M;Liu R H;Xu Q;Xue X Y,Zhang F F,Liang X M .[J].Fresenius Environmental Bulletin,2007,16:71.
[20] Fu D M;Peng Y R;Liu R H;Zhang F F Liang X M .[J].CHEMOSPHERE,2009,75:701.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%