欢迎登录材料期刊网

材料期刊网

高级检索

合成气直接转化高选择性制烃类产物仍是巨大的挑战.本文合成了以Cr-Zn氧化物为核, SiO2为中间过渡层,再通过原位水热合成覆盖一层SAPO-34分子筛为壳的核壳结构催化剂.合成气转化反应结果显示,与纯Cr-Zn金属氧化物相比,核壳结构催化剂将产物分布由甲醇和甲烷移动至C2–C4烃(所有烃类产物中占66.9%).这表明核壳结构催化剂用于合成气一步法直接转化制液化石油气的反应具有可行性,但是催化剂结构和组成有待于进一步优化,以提高其催化反应性能.

Direct conversion of syngas into hydrocarbons with high selectivity remains a challenge. Herein, we report the synthesis of a core–shell-structured catalyst constituting Cr-Zn oxide as the core and SAPO-34 as the shell for the conversion of syngas into hydrocarbons with high selectivity. A SiO2 layer was sandwiched between the core and the shell to prevent damage to the core during shell synthesis. Furthermore, the intermediate SiO2 layer acted as a Si source for the formation of the shell. The prepared catalyst displayed considerably higher selectivity toward the production of C2–C4 hydrocarbons (66.9%) than that of methanol and methane. The findings show the potential of the prepared core–shell-structured catalyst in the one-step production of hydrocarbons, such as liquefied petroleum gas, from syngas. However, further optimization of the catalyst is necessary to achieve higher performance.

参考文献

[1] Torres Galvis H M;de Jong K P .[J].ACS Catal,2013,3:2130.
[2] Wender I .[J].FUEL PROCESSING TECHNOLOGY,1996,48:189.
[3] 钱伯章.[J].精细化工原料及中间体,2010(01):10.
[4] Prieto G;Shakeri M;de Jong K P;de Jongh P E .[J].ACS Nano,2014,8:2522.
[5] Polarz, S;Neues, F;van den Berg, MWE;Grunert, W;Khodeir, L .Mesosynthesis of ZnO-silica composites for methanol nanocatalysis[J].Journal of the American Chemical Society,2005(34):12028-12034.
[6] Bradford M C J;Konduru M V;Fuentes D X .[J].FUEL PROCESSING TECHNOLOGY,2003,83:11.
[7] Zhang QW;Li XH;Fujimoto K .Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2006(1):28-32.
[8] Liu G Y;Tian P;Li J Z;Zhang D Z Zhou F Liu Z M .[J].Microporous and Mesoporous Materials,2008,111:143.
[9] 刘广宇,田鹏,刘中民.用于甲醇制烯烃反应的SAPO-34分子筛改性研究[J].化学进展,2010(08):1531-1537.
[10] Lebarbier Dagle V M;Dagle R A;Li J J;Deshmane C Taylor C E Bao X H Wang Y .[J].Industrial and Engineering Chemistry Research,2014,53:13928.
[11] Erena J;Arandes J M;Bilbao J;Aguayo A T de Lasa H I .[J].Industrial and Engineering Chemistry Research,1998,37:1211.
[12] Erena J;Arandes J M;Bilbao J;Olazar M de Lasa H I .[J].Journal of Chemical Technology and Biotechnology,1998,72:190.
[13] Jin Y Z;Yang R Q;Mori Y;Sun J Taguchi A Yoneyama Y Abe T Tsubaki N .[J].Applied Catalysis A:General,2013,456:75.
[14] Khan E A;Hu E P;Lai Z P .[J].Microporous and Mesoporous Materials,2009,118:210.
[15] Bao J;Yang G H;Okada C;Yoneyama Y Tsubaki N .[J].Applied Catalysis A:General,2011,394:195.
[16] Yang G H;Tsubaki N;Shamoto J;Yoneyama Y Zhang Y .[J].Journal of the American Chemical Society,2010,132:8129.
[17] Yang G H;Thongkam M;Vitidsant T;Yoneyama Y Tan Y S Tsubaki N .[J].Catalysis Today,2011,171:229.
[18] Pinkaew K;Yang G H;Vitidsant T;Jin Y Z Zeng C Y Yoneyama Y Tsubaki N .[J].FUEL,2013,111:727.
[19] Chen Y P;Xu Y M;Cheng D G;Chen Y C Chen F Q Lu X Y Huang Y P Ni S B .[J].Pure and Applied Chemistry,2014,86:775.
[20] Chen Y P;Xu Y M;Cheng D G;Chen Y C Chen F Q Lu X Y Huang Y P Ni S B .[J].Journal of Chemical Technology and Biotechnology,2015,90:415.
[21] Valizadeh B;Askari S;Halladj R;Haghmoradi A .[J].Synth React Inorg Met-Org Nano-Metal Chem,2014,44:79.
[22] Zhang Q W;Li X H;Asami K;Asaoka S,Fujimoto K .[J].FUEL PROCESSING TECHNOLOGY,2004,85:1139.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%