A visible‐light photocatalyst containing Ag2Se and reduced graphene oxide (RGO) was synthesized by a facile sonochemical‐assisted hydrothermal method. X‐ray diffraction, scanning electron mi‐croscopy with energy‐dispersive X‐ray analysis, and ultraviolet‐visible diffuse reflectance spectros‐copy results indicated that the RGO‐Ag2Se nanocomposite contained small crystalline Ag2Se nano‐particles dispersed over graphene nanosheets and absorbed visible light. The high crystallinity of the nanoparticles increased photocatalytic activity by facilitating charge transport. N2 adsorp‐tion‐desorption measurements revealed that the RGO‐Ag2Se nanocomposite contained numerous pores with an average diameter of 9 nm, which should allow reactant molecules to readily access the Ag2Se nanoparticles. The RGO‐Ag2Se nanocomposite exhibited higher photocatalytic activity than bulk Ag2Se nanoparticles to degrade organic pollutant rhodamine B and industrial dye Texbrite BA‐L under visible‐light irradiation (λ>420 nm). The generation of reactive oxygen spe‐cies in RGO‐Ag2Se was evaluated through its ability to oxidize 1,5‐diphenylcarbazide to 1,5‐diphenylcarbazone. The small size of the Ag2Se nanoparticles in RGO‐Ag2Se was related to the use of ultrasonication during their formation, revealing that this approach is attractive to form po‐rous RGO‐Ag2Se materials with high photocatalytic activity under visible light.
参考文献
[1] | Ghosh T;Cho K Y;Ullah K;Nikam V Park C Y Meng Z D Oh W C .[J].Journal of Industrial and Engineering Chemistry,2013,19:797. |
[2] | Helmes C T;Sigman C C;Fung V A;Thompson K Doeltz M K Mackie M Klein T E Lent D .[J].Journal of Environmental Science and Health part A-Toxic/Hazardous Substances and Environmental Engineering,1984,19:97. |
[3] | Pazarbasi M B;Kocyigit A;Ozdemir G;Yasa I Karaboz I .[J].FRESENIUS ENVIRONMENTAL BULLETIN,2012,21:1410. |
[4] | Rauf M A;Meetani M A;Khaleel A;Ahmed A .[J].CHEMICAL ENGINEERING JOURNAL,2010,157:373. |
[5] | Aliabadi M;Ghahremani H;Izadkhah F;Sagharigar T .[J].Fresen Envi-ron Bull,2012,21:2120. |
[6] | Das V D;Karunakaran D .[J].Physical Review B:Condensed Matter,1989,39:10872. |
[7] | Cao H Q;Xiao Y J;Lu Y X;Yin J F Li B J Wu S S Wu X M .[J].Nano Res,2010,3:863. |
[8] | Haubner, K.;Murawski, J.;Olk, P.;Eng, L.M.;Ziegler, C.;Adolphi, B.;Jaehne, E. .The route to functional graphene oxide[J].Chemphyschem: A European journal of chemical physics and physical chemistry,2010(10):2131-2139. |
[9] | Lupo F;Kamalakaran R;Scheu C;Grobert N Rühle M .[J].CARBON,2004,42:1995. |
[10] | Zhang X Y;Li H P;Cui X L;Lin Y H .[J].Journal of Materials Chemistry,2010,20:2801. |
[11] | Abdullah A Z;Ling P Y .[J].Journal of Hazardous Materials,2010,173:159. |
[12] | Khallaf H;Chen C T;Chang L B;Lupan O Dutta A Heinrich H Shenouda A Chow L .[J].Applied Surface Sinence,2011,257:9237. |
[13] | Wu N;Losovyj Y B;Wisbey D;Belashchenko K Manno M Wang L Leighton C Dowben P A .[J].Journal of Physics:Condensed Matter,2007,19:156. |
[14] | Nilsun H I;G?kce T G .[J].ULTRASONICS,2004,42:591. |
[15] | Tai GA;Guo WL .Sonochemistry-assisted microwave synthesis and optical study of single-crystalline US nanoflowers[J].Ultrasonics sonochemistry,2008(4):350-356. |
[16] | Meng Z D;Zhu L;Oh W C .[J].Journal of Industrial and Engineering Chemistry,2012,18:2004. |
[17] | Zhu L;Ghosh T;Park C Y;Meng Z D Oh W C .[J].Chin J Catal(催化学报),2012,33:1276. |
[18] | Oh W C;Zhang F J .[J].Asia J Chem,2011,23:875. |
[19] | Chen X J;Xu H H;Wang Y J;Hu S Zhang Z X Zhang Y M .[J].Agricultural Sciences in China,2007,6:458. |
[20] | Yang X Y;Zhang X Y;Ma Y F;Huang Y Wang Y S Chen Y S .[J].Journal of Materials Chemistry,2009,19:2710. |
[21] | Chen G Y;Wang D J;Liang C;Wei Z Y Zhang W X Liang J C Wang D M .[J].Rare Metal Mater Eng,2012,41:1153. |
[22] | Yu CC;Yu M;Li CX;Zhang CM;Yang PP;Lin J .Spindle-like Lanthanide Orthovanadate Nanoparticles: Facile Synthesis by Ultrasonic Irradiation, Characterization, and Luminescent Properties[J].Crystal growth & design,2009(2):783-791. |
[23] | Oh W C;Chen M L;Zhang K;Zhang F J Jang W K Zhang F J .[J].Journal of the Korean Physical Society,2010,56:1097. |
[24] | Zhan Y Q;Meng F B;Lei Y J;Zhao R Zhong J C Liu X B .[J].Materials Letters,2011,65:1737. |
[25] | Shigesato Y;Murayama A;Kamimori T;Matsuhiro K .[J].Applied Surface Sinence,1988,33:804. |
[26] | Krings LHM.;Talen W. .Wet chemical preparation and characterization of electrochromic WO3[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,1998(1/4):27-37. |
[27] | Chen R Z;Xu D S;Guo G L;Tang Y Q .[J].Journal of Materials Chemistry,2002,12:1437. |
[28] | Wuttig M .Phase-change materials - Towards a universal memory?[J].Nature materials,2005(4):265-266. |
[29] | Schoen D T;Xie C;Cui Y .[J].Journal of the American Chemical Society,2007,129:4116. |
[30] | Meng Z D;Ullah K;Zhu L;Ye S Oh W C .[J].Mater Sci Semicon Proc,2014,27:173. |
[31] | Low J X;Yu J G;Li Q;Cheng B .[J].Physical Chemistry Chemical Physics,2014,16:1111. |
[32] | Meng Z D;Ghosh T;Zhu L;Choi J G Park C Y Oh W C .[J].Journal of Materials Chemistry,2012,22:16127. |
[33] | Munter R .[J].Proc Estonian Acad Sci Chem,2001,50:59. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%