采用第一性原理计算考察了阴离子(硼、碳、氮、氟、磷、硫)掺杂的二氧化钛(包括锐钛矿相和金红石相)。芯位移计算结果表明,在氮掺杂的TiO2中,间隙掺杂类型的N的1s能级在XPS能谱上峰的位置要比替代掺杂的能级高,类似的结果也在硼、碳、磷和硫掺杂的TiO2上发现。然而对于F掺杂的TiO2,替代掺杂的峰位置比间隙掺杂的高,且与TiO2的晶相无关。还对阴离子掺杂的TiO2进行了热力学研究。结果表明,替换掺杂的形成焓高于间隙掺杂的,因此替代掺杂的TiO2的制备需要苛刻的条件,而间隙掺杂TiO2的制备只需温和的湿化学条件。
We present a comprehensive and improved density functional theory (DFT) calculation of ani‐on‐doped (anion=B, C, N, F, P, S) anatase and rutile TiO2. The first part is a first principles calcula‐tion of the core level shifts (CLS) for various anion dopants in both anatase and rutile TiO2. The CLS results revealed that interstitial N had a higher N 1s binding energy than substitutional N, which agreed well with experimental results. The calculation also showed that for B‐, C‐, S‐, and P‐doped TiO2, the interstitial dopant had an energy that is higher than that of a substitutional dopant, which is similar to N‐doped TiO2. However, for F‐doped TiO2, the energy of the substitutional dopant is higher, and this is irrespective of the TiO2 crystallography. We also calculated the enthalpy of doping and found that the substitutional dopant had a higher enthalpy than the interstitial dopant. The results revealed that substitutional doping required severe experimental conditions, whereas inter‐stitial doping only requires modest wet chemistry conditions.
参考文献
[1] | Fujishima A, Honda K. Nature, 1972, 238:37,1972. |
[2] | Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1:1,2000. |
[3] | Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293:269,2001. |
[4] | Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297:2243,2002. |
[5] | Chen X B, Mao S S. Chem Rev, 2007, 107:2891,2007. |
[6] | Lindgren T, Mwabora J M, Avendano E, Jonsson J, Hoel A, Granqvist C G, Lindquist S E. J Phys Chem B, 2003, 107:5709,2003. |
[7] | Mwabora J M, Lindgren T, Avendano E, Jaramillo T F, Lu J, Lind-quist S E, Granqvist C G. J Phys Chem B, 2004, 108:20193,2004. |
[8] | Nakano Y, Morikawa T, Ohwaki T, Taga Y. Appl Phys Lett, 2005, 86:132104,2005. |
[9] | Diwald O, Thompson T L, Goralski E G, Walck S D, Yates J T Jr. J Phys Chem B, 2004, 108:52,2004. |
[10] | Batzill M, Morales E H, Diebold U. Phys Rev Lett, 2006, 96:026103,2006. |
[11] | Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P. Nano Lett, 2006, 6:1080,2006. |
[12] | Irie H, Watanabe Y, Hashimoto K. J Phys Chem B, 2003, 107:5483,2003. |
[13] | Yu J G, Yu J C, Leung M K P, Ho W, Cheng B, Zhao X J, Zhao J C. J Catal, 2003, 217:69,2003. |
[14] | Burda C, Lou Y B, Chen X B, Samia A C S, Stout J, Gole J L. Nano Lett, 2003, 3:1049,2003. |
[15] | Sakthivel S, Janczarek M, Kisch H. J Phys Chem B, 2004, 108:19384,2004. |
[16] | Gole J L, Stout J D, Burda C, Lou Y B, Chen X B. J Phys Chem B, 2004, 108:1230,2004. |
[17] | Wang Z P, Cai W M, Hong X T, Zhao X L, Xu F, Cai C G. Appl Catal B, 2005, 57:223,2005. |
[18] | Li H X, Li J X, Huo Y N. J Phys Chem B, 2006, 110:1559,2006. |
[19] | Livraghi S, Paganini M C, Giamello E, Selloni A, Di Valentin C, Pac-chioni G. J Am Chem Soc, 2006, 128:15666,2006. |
[20] | Kisch H, Sakthivel S, Janczarek M, Mitoraj D. J Phys Chem C, 2007, 111:11445,2007. |
[21] | Cong Y, Zhang J L, Chen F, Anpo M. J Phys Chem C, 2007, 111:6976,2007. |
[22] | Wang J W, Zhu W, Zhang Y Q, Liu S X. J Phys Chem C, 2007, 111:1010,2007. |
[23] | Fang J, Wang F, Qian K, Bao H Z, Jiang Z Q, Huang W X. J Phys Chem C, 2008, 112:18150,2008. |
[24] | Huo Y N, Bian Z F, Zhang X Y, Jin Y, Zhu J, Li H X. J Phys Chem C, 2008, 112:6546,2008. |
[25] | Joung S K, Amemiya T, Murabayashi M, Itoh K. Appl Catal A, 2006, 312:20,2006. |
[26] | Liu G, Li F, Chen Z G, Lu G Q, Cheng H M. J Solid State Chem, 2006, 179:331,2006. |
[27] | He F, Ma X F, Li T, Li G X. Chin J Catal(何菲,马秀芳,李涛,李光兴.催化学报), 2013, 34:2263,2013. |
[28] | Mohamed R M, Aazam E. Chin J Catal(催化学报), 2013, 34:1267,2013. |
[29] | Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal(周晚琴,余长林,樊启哲,魏龙福,陈建钗, Yu J C. 催化学报), 2013, 34:1250,2013. |
[30] | Liu E Q, Guo X L, Qin L, Shen G D, Wang X D. Chin J Catal(刘二强,郭晓玲,秦雷,申国栋,王向东. 催化学报), 2012, 33:1665,2012. |
[31] | Serpone N. J Phys Chem B, 2006, 110:24287,2006. |
[32] | Chen X B, Burda C. J Phys Chem B, 2004, 108:15446,2004. |
[33] | Rodriguez J A, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A. J Am Chem Soc, 2001, 123:9597,2001. |
[34] | Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. J Phys Chem C, 2007, 111:11836,2007. |
[35] | Zaleska A, Sobczak J W, Grabowska E, Hupka J. Appl Catal B, 2008, 78:92,2008. |
[36] | Finazzi E, Di Valentin C, Pacchioni G. J Phys Chem C, 2009, 113:220,2009. |
[37] | Bettinelli M, Dallacasa V, Falcomer D, Fornasiero P, Gombac V, Montini T, Romano L, Speghini A. J Hazard Mater, 2007, 146:529,2007. |
[38] | Chen D M, Yang D, Wang Q, Jiang Z Y. Ind Eng Chem Res, 2006, 45:4110,2006. |
[39] | Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126:4782,2004. |
[40] | Moon S C, Mametsuka H, Tabata S, Suzuki E. Catal Today, 2000, 58:125,2000. |
[41] | Czoska A M, Livraghi S, Paganini M C, Giamello E, Di Valentin C, Pacchioni G. Phys Chem Phys Chem, 2011, 13:136,2011. |
[42] | Di Valentin C, Pacchioni G, Onishi H, Kudo A. Chem Phys Lett, 2009, 469:166,2009. |
[43] | Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Czoska A M, Paganini M C, Giamello E. Chem Mater, 2008, 20:3706,2008. |
[44] | Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E. Chem Phys, 2007, 339:44,2007. |
[45] | Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E. J Phys Chem B, 2005, 109:11414,2005. |
[46] | Di Valentin C, Pacchioni G, Selloni A. Chem Mater, 2005, 17:6656,2005. |
[47] | Heyd J, Scuseria G E, Ernzerhof M. J Chem Phys, 2006, 124:219906,2006. |
[48] | Heyd J, Scuseria G E. J Chem Phys, 2004, 121:1187,2004. |
[49] | Heyd J, Scuseria G E, Ernzerhof M. J Chem Phys, 2003, 118:8207,2003. |
[50] | Kresse G, Hafner J. Phys Rev B, 1993, 48:13115,1993. |
[51] | Kresse G, Hafner J. Phys Rev B, 1994, 49:14251,1994. |
[52] | Kresse G, Furthmuller J. Phys Rev B, 1996, 54:11169,1996. |
[53] | Kresse G, Furthmuller J. Comput Mater Sci, 1996, 6:15,1996. |
[54] | Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E. J Chem Phys,2006, 125:224106,2006. |
[55] | Slater J C. J Chem Phys, 1964, 41:3199,1964. |
[56] | Allred A L. J Inorg Nucl Chem, 1961, 17:215,1961. |
[57] | Saha N C, Tompkins H G. J Appl Phys, 1992, 72:3072,1992. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%