欢迎登录材料期刊网

材料期刊网

高级检索

利用乙二醇的还原性,采用乙二醇溶剂热法制备了表面具有丰富氧空穴的CeO2-GST纳米晶,对其进行了X射线衍射、透射电镜、X射线光电子能谱、原位H2还原-O2氧化循环和CO2原位红外漫反射表征,并研究了其可逆氧化还原性及CO2捕获性能。结果表明,与CeO2-nanorod和柠檬酸溶胶法合成的CeO2-CA样品相比, CeO2-GST纳米晶具有最好的可逆氧化还原性能和循环稳定性,同时在50 oC下具有最好的CO2吸附性能(149μmol/g)。利用原位红外漫反射光谱研究了CO2在还原CeO2表面的吸附情况,发现CO2主要以双齿碳酸盐和桥连碳酸盐两种形式吸附在CeO2表面,其中桥连碳酸盐物种不稳定, He吹扫可脱附。此外, CO2在CeO2-nanorod上还会生成稳定的甲酸盐和单齿碳酸盐物种。

CeO2 nanocrystals with plentiful oxygen vacancies were synthesized by a glycol solvothermal method (CeO2-GST) using the strong reducibility of glycol. For comparison, CeO2 nanorods (CeO2-nanorods) and CeO2 nanoparticles (CeO2-CA) were also prepared. The samples were charac-terized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, H2 reduction-O2 oxidation cycle experiments and in situ CO2 infrared spectroscopy. The CeO2-GST sample exposed mainly (111) facets with abundant Ce3+ions on its surface, and it gave excellent reversible redox behavior and high oxygen storage capacity. After seven H2 reduction-O2 oxidation cycles, the oxygen storage capacity became stable. The CeO2-GST sample also had a high CO2 ad-sorption capacity of 149μmol/g at 50 °C by forming bidentate and bridge carbonates on the CeO2 surface. These carbonate species were less stable than the unidentate carbonate, bicarbonate and formate species, thus adsorbed CO2 was released easily. On reduced CeO2 nanorod, CO2 formed the stable unidentate carbonate and formate species, which is unfavorable for the release of adsorbed CO2.

参考文献

[1] Torvarelli A .[J].Catalysis Reviews-Science and Engineering,1996,38:439.
[2] Kaspar J;Fornasiero P;Graziani M .[J].Catalysis Today,1999,50:285.
[3] Di Monte R;Kaspar J .Nanostructured CeO2-ZrO2 mixed oxides[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2005(6):633-648.
[4] 胡久彪,余长林,毕亚东,魏龙福,陈建钗,陈喜蓉.Ni/CeO2-SiO2催化剂的制备、表征及其甲烷部分氧化制合成气性能[J].催化学报,2014(01):8-20.
[5] Benjaram M R;Gode T;Katta L .[J].催化学报,2011,32:800.
[6] Vivier L;Duprez D .[J].ChemSusChem,2010,3:654.
[7] Buitrago-Sierra R;Serrano-Ruiz J C;Rodríguez-Reinoso F;Sepúlveda-Escribano A Dumesic J A .[J].Green Chemistry,2012,14:3318.
[8] Hsu W P;Ronnquist L;Matijevie E .[J].LANGMUIR,1988,4:31.
[9] Mai H X;Sun L D;Zhang Y W;Si R Feng W Zhang H P Liu H C Yan C H .[J].Journal of Physical Chemistry B,2005,109:24380.
[10] Liu B;Li Q J;Du X B;Liu B B Yao M G Li Z P Liu R Liu D D Zou X Lü H Li D M Zou B Cui T Zou G T .[J].Journal of Alloys and Compounds,2011,509:6720.
[11] Sayle T X T;Parker S C;Catlow C R A .[J].Surface Science,1994,316:329.
[12] Conesa JC. .COMPUTER MODELING OF SURFACES AND DEFECTS ON CERIUM DIOXIDE[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1995(3):337-352.
[13] Sayle DC.;Maicaneanu SA.;Watson GW. .Atomistic models for CeO2(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia[J].Journal of the American Chemical Society,2002(38):11429-11439.
[14] Désaunay, T.;Bonura, G.;Chiodo, V.;Freni, S.;Couzinié, J.-P.;Bourgon, J.;Ringuedé, A.;Labat, F.;Adamo, C.;Cassir, M..Surface-dependent oxidation of H_2 on CeO_2 surfaces[J].Journal of Catalysis,2013:193-201.
[15] Liu, XW;Zhou, KB;Wang, L;Wang, BY;Li, YD .Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods[J].Journal of the American Chemical Society,2009(9):3140-3141.
[16] Esch F;Fabris S;Zhou L;Montini T Africh C Fornasiero P Comelli G Rosei R .[J].SCIENCE,2009,309:752.
[17] Wang W;Wang S P;Ma X B;Gong J L .[J].CHEMICAL SOCIETY REVIEWS,2011,40:3703.
[18] Otsuka K;Ushiyama T;Yamanaka I.[J].CHEMISTRY LETTERS,1993:1517.
[19] Lykhach, Y.;Staudt, T.;Streber, R.;Lorenz, M.P.A.;Bayer, A.;Steinrück, H.-P.;Libuda, J. .CO_2 activation on single crystal based ceria and magnesia/ceria model catalysts[J].The European physical journal, B. Condensed matter physics,2010(1):89-100.
[20] Staudt, T.;Lykhach, Y.;Tsud, N.;Skála, T.;Prince, K.C.;Matolín, V.;Libuda, J. .Ceria reoxidation by CO_2: A model study[J].Journal of Catalysis,2010(1):181-185.
[21] Zhuo C;Sherman B J;Lo C S .[J].Journal of Chemical Physics,2013,138:014702/1.
[22] Yang S C;Su W N;Rick J;Lin S D Liu J Y Pan C J Lee J F Hwang B J .[J].ChemSusChem,2013,6:1326.
[23] Liang X;Wang X;Zhuang Y;Xu B;Kuang SM;Li YD .Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect[J].Journal of the American Chemical Society,2008(9):2736-2737.
[24] Laachir A;Perrichon V;Badri A;Lamotte J, Catherine E, Lavalley J C, Fallah J E, Hilaire L, Normand F L, Quéméré E, Sauvion G N, Touret O .[J].Journal of the Chemical Society Faraday Transactions,1991,87:1601.
[25] Wrobel G;Sohier M P;D'Huysser A;Bonnelle J P Marcq J P .[J].Applied Catalysis A:General,1993,101:73.
[26] Noronha F B;Fendley E C;Soares R R;Alvarez W E Resasco D E .[J].CHEMICAL ENGINEERING JOURNAL,2001,82:21.
[27] Normand F L;Hilaire L;Kili K;Krill G Mairet G .[J].Journal of Physical Chemistry,1988,92:2561.
[28] Trovarelli A .[J].Comments on Inorganic Chemistry,1999,20:263.
[29] Skorodumova N V;Simak S I;Lundqvist B I;Abrikosov I A Johans-son B .[J].Physical Review Letters,2002,89:166601/1.
[30] D'Alessandro D M;Smit B;Long J R .[J].ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2010,49:6058.
[31] 张元卓,于兹瀛,张富民,肖强,钟依均,朱伟东.纳米 Li2ZrO3吸收剂原位移除 CO2强化水煤气变换反应制氢[J].催化学报,2012(09):1572-1577.
[32] Wang Y G;Li B;Zhang C L;Cui L F Kang S F Li X Zhou L H .[J].Applied Catalysis B:Environmental,2013,130-131:277.
[33] Campbell C T;Peden C H F .[J].SCIENCE,2005,309:713.
[34] Li C;Sakata Y;Arai T;Domen K, Naruya K, Onishi T .[J].J Chem Soc Faraday Trans 1,1989,85:919.
[35] Li C;Sakata Y;Arai T;Domen K, Naruya K, Onishi T .[J].J Chem Soc Faraday Trans 1,1989,85:1451.
[36] Binet C;Badri A;Boutonnet-Kizlingt M;Lavalley J C .[J].Journal of the Chemical Society Faraday Transactions,1994,90:1023.
[37] Jin T;Zhou Y;Mains G J;White J M .[J].Journal of Physical Chemistry,1987,91:5931.
[38] Vayssilov G N;Mihaylov M;Petkov P S;Hadjiivanov K I Neyman K M .[J].J Phys Chem C,2011,115:23435.
[39] Agarwal S;Zhu X;Hensen E J M;Lefferts L Mojet B L .[J].J Phys Chem C,2014,118:4131.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%