采用溅射或溅射与退火相结合的方法制备了一系列氧化钆掺杂的氧化铈(GDC)隔层,并考察了其对固体氧化燃料电池性能的影响。结果表明,200°C下溅射获得了立方结构氧化钆掺杂的氧化铈均匀薄膜,在900-1100°C范围内的退火处理使得GDC薄膜致密,从而有效阻止了氧化钇掺杂的氧化锆电解质与阴极材料之间的反应,大幅度提高了电池的电化学性能。
We prepared gadolinia-doped ceria (GDC) barrier layers by sputtering and annealing at various temperatures. We then investigated the effects of the GDC barrier layers on the performance of anode-supported solid oxide fuel cells. Sputtering at 200 °C readily produced a uniform, thin layer of cubic GDC. Sputtering and annealing at 900-1100 °C formed uniform, thin, dense films, which effec-tively prevented the reaction between the yttria-stabilized zirconia electrolyte and the Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode. The single cells assembled with the thin, dense GDC barrier layers sputtered at 200 °C and annealed at 900-1000 °C exhibited excellent electrochemical performance.
参考文献
[1] | Skinner S J .[J].Fuel Cells Bull,2001,4:6. |
[2] | Tu H.Y.;Imanishi N.;Yamamoto O.;Takeda Y. .Ln_(0.4)Sr_(0.6)Co_(0.8)Fe_(0.2)O _(3-δ) (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells[J].Solid state ionics,1999(3/4):277-281. |
[3] | 孟丽,王方中,王傲,蒲健,池波,李箭.固-溶法制备中温固体氧化物燃料电池高性能La0.8Sr0.2MnO3-Ba0.5Sr0.5Co0.8Fe0.2O3阴极[J].催化学报,2014(01):38-42. |
[4] | Zhu QS;Jin TA;Wang Y .Thermal expansion behavior and chemical compatibility of BaxSr1-xCo1-yFeyO3-delta with 8YSZ and 20GDC[J].Solid state ionics,2006(13/14):1199-1204. |
[5] | Duan Z S;Yang M;Yan A Y;Hou Z F Dong Y L Chong Y Cheng M J Yang W S .[J].Journal of Power Sources,2006,160:57. |
[6] | Nguyen T L;Kobayashi K;Honda T;Iimura Y Kato K Neghisi A Nozaki K Tappero F Sasaki K Shirahama H Ota K Dokiya M Kato T .[J].Solid State Ionicis,2004,174:163. |
[7] | Jung, HG;Sun, YK;Jung, HY;Park, JS;Kim, HR;Kim, GH;Lee, HW;Lee, JH .Investigation of anode-supported SOFC with cobalt-containing cathode and GDC interlayer[J].Solid state ionics,2008(27/32):1535-1539. |
[8] | Shiono M;Kobayashi K;Nguyen TL;Hosoda K;Kato T;Ota K;Dokiya M .Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr)CoO3 cathode for low-temperature SOFCs[J].Solid state ionics,2004(1/2):1-7. |
[9] | Mai A;Haanappel VAC;Tietz F;Stover D .Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells - Part II. Influence of the CGO interlayer[J].Solid state ionics,2006(19/25):2103-2107. |
[10] | Jordan, N;Assenmacher, W;Uhlenbruck, S;Haanappel, VAC;Buchkremer, HP;Stover, D;Mader, W .Ce0.8Gd0.2O2-delta protecting layers manufactured by physical vapor deposition for IT-SOFC[J].Solid state ionics,2008(21/26):919-923. |
[11] | Uhlenbruck S;Jordan N;Sebold D;Buchkremer H P Haanappel V A C St?ver D .[J].THIN SOLID FILMS,2007,515:4053. |
[12] | Fonseca F C;Uhlenbruck S;Nédélec R;Sebold D Buchkremer H P .[J].Journal of the Electrochemical Society,2010,157:B1515. |
[13] | Liu W;Li B;Liu H Q;Pan W .[J].Electrochimica Acta,2011,56:8329. |
[14] | Gong Y H;Ji W J;Zhang L;Li M Xie B Wang H Q Jiang Y S Song Y Z .[J].Journal of Power Sources,2011,196:2768. |
[15] | Chourashiya M G;Jadhav L D .[J].International Journal of Hydrogen Energy,2011,36:14984. |
[16] | Nagata A.;Okayama H. .Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2002(3/4):523-529. |
[17] | Yang J J;Ma W H;Yu J;Chen X H Xing J Li R .[J].Journal of Rare Earths,2013,31:582. |
[18] | Mahata T;Das G;Mishra R K;Sharma B P .[J].Journal of Alloys and Compounds,2005,391:129. |
[19] | Zhou X D;Scarfino B;Anderson H U .[J].Solid State Ionicis,2004,175:19. |
[20] | Leng Y J;Chan S H;Khor K A;Jiang S P .[J].International Journal of Hydrogen Energy,2004,29:1025. |
[21] | Wang Z W;Cheng M J;Dong Y L;Zhang M Zhang H M .[J].Journal of Power Sources,2006,156:306. |
[22] | Liu B;Muroyama H;Matsui T;Tomida K Kabata T Eguchi K .[J].Journal of the Electrochemical Society,2010,157:B1858. |
[23] | Leonide A;Sonn V;Weber A;Ivers-Tiffée E .[J].Journal of the Electrochemical Society,2008,155:B36. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%