采用简易离子交换法制备可见光驱动Ag3PO4光催化剂。通过X射线衍射、场发射扫描电子显微镜、N2吸附-脱附、紫外-可见漫反射光谱及傅里叶变换红外光谱对所制备的Ag3PO4催化剂进行表征。结果表明,在可见光照射下, Ag3PO4催化剂对罗丹明B降解表现出优越的光催化活性,但对甲基橙的降解活性低,这归因于Ag3PO4催化剂对甲基橙分子吸附量低。可见光照Ag3PO4反应体系中,空穴和超氧自由基共同发挥作用导致罗丹明B和甲基橙光催化降解。在罗丹明B的协助作用下, Ag3PO4催化剂对甲基橙的可见光催化降解活性大大增强,这是由于罗丹明B的存在可产生更多的超氧自由基,从而使甲基橙进一步降解。
A visible-light-driven Ag3PO4 catalyst was successfully synthesized by a facile ion-exchange route. The as-synthesized Ag3PO4 was characterized by X-Ray diffraction (XRD), field-emission scanning electron microscopy, N2 adsorption-desorption, UV-Vis diffuse reflectance spectroscopy and Fourier transform infrared spectroscopy. Under visible light irradiation, the Ag3PO4 catalyst showed excel-lent photocatalytic activity for rhodamine (RhB) degradation, but was poor at degrading methyl orange (MO) because of lower adsorption of MO molecules onto the surface of the Ag3PO4. The pho-todegradation of RhB and MO was achieved by holes and O2?-radical attack in the Ag3PO4 suspen-sion. The photodegradation of MO over the Ag3PO4 catalyst was greatly enhanced in the presence of RhB owing to greater production of O2?-radicals.
参考文献
[1] | Bauer C;Jacques P;Kalt A .[J].Journal of Photochemistry and Photobiology A:Chemistry,2001,140:87. |
[2] | Kyung H;Lee J;Choi W .[J].Environmental Science and Technology,2005,39:2376. |
[3] | 郑云,潘志明,王心晨.国内光催化研究进展简述[J].催化学报,2013(03):524-535. |
[4] | Pan C S;Zhu Y F .[J].Environmental Science and Technology,2010,44:5570. |
[5] | Sinha A K;Pradhan M;Sarkar S;Pal T .[J].Environmental Science and Technology,2013,47:2339. |
[6] | Tong H;Ouyang S X;Bi Y P;Umezaw N Oshikiri M Ye J H .[J].Advanced Materials,2012,24:229. |
[7] | Zhang L W;Zhu Y F .[J].Catal Sci Technol,2012,2:694. |
[8] | Pelaez M;Nolan N T;Pillai S C;Seery M K Falaras P Kontos A G Dunlop P S M Hamilton J W J Byrne J A O'Shea K Entezari M H Dionysiou D D .[J].Applied Catalysis B:Environmental,2012,125:331. |
[9] | Yi Z G;Ye J H;Kikugawa N;Kako T Ouyang S X Stuart-Williams H Yang H Cao J Y Luo W J Li Z S Liu Y Withers R L .[J].NATURE MATERIALS,2010,9:559. |
[10] | Yan X H;Gao Q X;Qin J L;Yang X F Li Y Tang H .[J].Ceramics International,2013,39:9715. |
[11] | Dong P Y;Wang Y H;Li H H;H Li Ma X L,Han L L .[J].J Mater Chem A,2013,1:4651. |
[12] | Vu T A;Dao C D;Hoang T T T;Nguyen K T Le G H Dang P T Tran H T K Nguyen T V .[J].Materials Letters,2013,92:57. |
[13] | Wang W G;Cheng B;Yu J G;Liu G Fan W H .[J].Chem Asian J,2012,7:1902. |
[14] | Wang, H.;Bai, Y.;Yang, J.;Lang, X.;Li, J.;Guo, L. .A facile way to rejuvenate Ag _3PO _4 as a recyclable highly efficient photocatalyst[J].Chemistry: A European journal,2012(18):5524-5529. |
[15] | Liang Q H;Ma W J;Shi Y;Li Z Yang X M .[J].CRYSTENGCOMM,2012,14:2966. |
[16] | Ge M;Zhu N;Zhao Y P;Li J Liu L .[J].Industrial and Engineering Chemistry Research,2012,51:5167. |
[17] | Bi Y P;Ouyang S X;Umezawa N;Cao J Y Ye J H .[J].Journal of the American Chemical Society,2011,133:6490. |
[18] | Li H H;Yin S;Wang Y H;Sekino T Lee S W Sato T .[J].J Mater Chem A,2013,1:1123. |
[19] | 聂龙辉,黄征青,徐洪涛,张旺喜,杨柏蕊,方磊,李帅华.Ag@AgBr光催化剂的制备及其可见光催化降解亚甲基蓝反应性能[J].催化学报,2012(07):1209-1216. |
[20] | Xiang Q J;Yu J G;Wang W G;Jaroniec M .[J].Chemistry Communications,2011,47:6906. |
[21] | Yin W Z;Wang W Z;Sun S M .[J].CATALYSIS COMMUNICATIONS,2010,11:647. |
[22] | Yang X F;Cui H Y;Li Y;Qin J L Zhang R X Tang H .[J].ACS Catal,2013,3:363. |
[23] | Chen Z H;Wang W L;Zhang Z G;Fang X M .[J].J Phys Chem C,2013,117:19346. |
[24] | Liang, H.Y.;Yang, Y.X.;Tang, J.C.;Ge, M. .Photocatalytic properties of Bi_2O_2CO_3 nanosheets synthesized via a surfactant-assisted hydrothermal method[J].Materials science in semiconductor processing,2013(6):1650-1654. |
[25] | Yan, SC;Li, ZS;Zou, ZG .Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation[J].Langmuir: The ACS Journal of Surfaces and Colloids,2010(6):3894-3901. |
[26] | Chen C C;Ma W H;Zhao J C .[J].CHEMICAL SOCIETY REVIEWS,2010,39:4206. |
[27] | Teng W;Li X Y;Zhao Q D;Zhao J J Zhang D K .[J].Applied Catalysis B:Environmental,2012,125:538. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%