欢迎登录材料期刊网

材料期刊网

高级检索

生物油中酸类和酮类化合物具有较高的裂化活性,而使用分子蒸馏技术能将这些组分富集到蒸出馏分中,因此蒸出馏分相比原始生物油具有更好的裂化特性.为了模拟实际蒸出馏分的组成,本文将生物油模化物(羟基丙酮(HPO)、环戊酮和乙酸)进行配比混合,在固定床反应器上对其与乙醇的共裂化行为进行了研究,考察了不同反应温度和压力对混合反应物的转化率、粗汽油相的选择性和组成的影响.研究发现,当反应温度在340°C时,乙酸和乙醇的转化率分别仅为67.9%和74.4%,同时得到的油相产物中烃类含量仅为59.8%,并含有大量的含氧副产物.常压裂化同样生成了低品质的油相产物,同时油相选择性仅为10.8%.提高反应温度能促进反应物的转化,提高裂化过程中的脱氧效率,而提高反应压力对液体烃类的生成有明显的促进作用.在400°C和2 MPa时,酸类和酮类都有良好的裂化表现,反应物接近完全转化,粗汽油相选择性达到31.5%,且全部由烃类组成,其中芳香烃含量高达91.5%.此外,反应后催化剂表征和稳定性测试结果表明,催化剂在较长时间反应后会失活,但通过催化剂再生能够很好地恢复催化剂活性.

Acids and ketones in biomass pyrolysis oil (bio-oil) can be readily cracked to produce hydrocar-bons. They can also be enriched in the distilled fraction using molecular distillation techniques. To simulate the actual composition of the distilled fraction, the co-cracking performance of mixtures of hydroxypropanone, cyclopentanone, and acetic acid with ethanol in a fixed-bed reactor over an HZSM-5 catalyst was studied. The influences of reaction temperature and pressure on the reactant conversion, selectivity, and composition of the oil phase were investigated. At a low reaction tem-perature of 340 °C, the conversions of acetic acid and ethanol were as low as 67.9%and 74.4%, respectively, and the oil phase had a low hydrocarbon content of 59.8%, with large amounts of oxygenated byproducts. Cracking under atmospheric pressure also generated a low-quality oil phase with a very low selectivity of only 10.8%. Increasing the reaction temperature promoted reactant conversion and improved the deoxygenation efficiency, whereas increasing the reaction pressure significantly promoted hydrocarbon production. The optimum conditions for biogasoline production were 400 °C and 2 MPa. Under these conditions, the reactant conversion reached 100%and the oil phase selectivity was 31.5 wt%. This oil phase consisted entirely of hydrocarbons, 91.5 wt%of which were aromatic hydrocarbons, indicating that the HZSM-5 catalyst had high activity for deoxygenation and aromatization reactions during cracking. In addition, characterization of the spent catalysts and stability tests showed that the catalyst was deactivated after a long reaction time. However, the catalytic activity was recovered by catalyst regeneration.

参考文献

[1] Demirbas A .[J].Progress in Energy and Combustion Science,2007,33:1.
[2] Gu H Y;Zhang K;Wang Y D;Huang Y Hewitt N Roskilly A P .[J].J En-ergy Chem,2013,22:413.
[3] 李庆远,季生福,胡金勇,蒋赛.镍基催化剂上稻草水蒸气重整制富氢合成气[J].催化学报,2013(07):1462-1468.
[4] Ozbay N;Apaydin-Varol E;Burcu Uzun B;Eren Putun A .[J].ENERGY,2008,33:1233.
[5] 谭顺,张志军,孙剑平,王清文.HZSM-5上生物质催化裂解的近期研究进展[J].催化学报,2013(04):641-650.
[6] 王昶,郝庆兰,卢定强,贾青竹,李桂菊,许博.生物质催化热解制取轻质芳烃[J].催化学报,2008(09):907-912.
[7] Czernik S;Bridgwater A V .[J].Energy and Fuels,2004,18:590.
[8] Zhang Q;Chang J;Wang T J;Xu Y .[J].Energy Conversion & Management,2007,48:87.
[9] Gong F Y;Yang Z;Hong C G;Huang W W Ning S Zhang Z X Xu Y Li Q X .[J].BIORESOURCE TECHNOLOGY,2011,102:9247.
[10] Gra?a I;Lopes J M;Cerqueira H S;Ribeiro M F .[J].Industrial and Engineering Chemistry Research,2013,52:275.
[11] Adjaye J D;Katikaneni S P R;Bakhshi N N .[J].FUEL PROCESSING TECHNOLOGY,1996,48:115.
[12] 王威燕,张小哲,杨运泉,杨彦松,彭会左,刘文英.生物油中酚类化合物加氢脱氧催化剂研究进展[J].催化学报,2012(02):215-221.
[13] Guo Z G;Wang S R;Xu G H;Cai Q J .[J].BioResources,2011,6:2539.
[14] Mentzel U V;Holm M S .[J].Applied Catalysis A:General,2011,396:59.
[15] Vitolo S.;Frediani P.;Ambrosini G.;Politi L.;Seggiani M. .Catalytic upgrading of pyrolytic oils to fuel over different zeolites[J].Fuel,1999(10):1147-1159.
[16] Gayubo A G;Aguayo A T;Atutxa A;Aguado R Bilbao J .[J].Industrial and Engineering Chemistry Research,2004,43:2610.
[17] Gayubo A G;Aguayo A T;Atutxa A;Aguado R Olazar M Bilbao J .[J].Industrial and Engineering Chemistry Research,2004,43:2619.
[18] Valle B;Gayubo A G;Aguayo A T;Olazar M Bilbao J .[J].Energy and Fuels,2010,24:2060.
[19] Guo Z G;Wang S R;Gu Y L;Xu G H Li X Luo Z Y .[J].Separation and Purification Technology,2010,76:52.
[20] Wang S R;Gu Y L;Liu Q;Yan Y Guo Z G Luo Z Y Cen K F .[J].Fuel Pro-cess Technol,2009,90:738.
[21] Guo X J;Wang S R;Guo Z G;Liu Q Luo Z Y Cen K F .[J].Applied Energy,2010,87:2892.
[22] Mortensen P M;Grunwaldt J D;Jensen P A;Knudsen K G Jensen A D .[J].Applied Catalysis A:General,2011,407:1.
[23] Wang S R;Cai Q J;Wang X Y;Guo Z G Luo Z Y .[J].FUEL PROCESSING TECHNOLOGY,2013,111:86.
[24] Wang S R;Cai Q J;Guo Z G;Wang Y R Wang X Y .[J].BioResources,2012,7:5019.
[25] Huang J;Long W;Agrawal P K;Jones C W .[J].J Phys Chem C,2009,113:16702.
[26] Cruz-Cabeza A J;Esquivel D;Jimenez-Sanchidrian C;Romero-Salguero F J .[J].Materials,2012,5:121.
[27] Haw J F;Song W G;Marcus D M;Nicholas J B .[J].Accounts of Chemical Research,2003,36:317.
[28] Olsbye U;Bjorgen M;Svelle S;Lillerud K P Kolboe S .[J].Catalysis Today,2005,106:108.
[29] Adjaye J D;Bakhshi N N .[J].Biomass and Bioenergy,1995,8:131.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%