欢迎登录材料期刊网

材料期刊网

高级检索

甲烷是一种在自然界中大量存在的原材料,在取代原油和合成重要化工产品等许多领域具有潜在的应用价值.然而,由于CH4中C-H键的键能特别大(约~4.5 eV),如何实现甲烷的绿色有效转化在化学化工领域仍然是一个挑战.本文采用密度泛函理论对Co3O4(001)和(011)晶面活化甲烷C-H键的机理进行了理论研究,得到了如下结论:(1) CH4的C-H键在Co3O4晶面的解离具有很高的活性,只需要克服大约1 eV的能垒;(2)与Co2+相连的Co-O离子对是CH4活化的活性位点,其中两个带正负电荷的离子对C-H解离起着协同作用,帮助产生Co-CH3和O-H物种;(3)(011)面的反应活性明显大于(001)面,与实验的观察一致.本文的计算结果表明, Co3O4纳米晶面对CH4中C-H键的活化表现出明显的晶面效应和结构敏感效应, Co-O离子对活性中心对于活化惰性的C-H键发挥了关键作用.

Methane has attracted extensive interest in recent years due to its potential application as a re-placement of oil and a feedstock for valuable chemicals. Due to the large C-H bond energy, the con-version of methane into useful products has been a challenge. In the present study, density func-tional theory (DFT) calculations were performed to study the activation of the C-H bond of methane on the (001) and (011) planes of Co3O4, which showed that CH4 activation on Co3O4 nanocrystals was fairly easy with only small energy barriers (less than 1.1 eV). Surface Co-O ion pairs are the active site for C-H bond activation, where the two ions provide a synergistic effect for the activation of the strong C-H bond and yield surface Co-CH3 and O-H species. The Co3O4(011) surface is shown to be more reactive for C-H bond activation than the Co3O4(001) surface, which is consistent with previous experimental results. Our results suggest that methane oxidation on Co3O4 nanocrystals has strong crystal plane effect and structure sensitivity and the ion-pair active center plays a signif-icant role in activating the strong C-H bond.

参考文献

[1] Crabtree R H .[J].CHEMICAL REVIEWS,1995,95:987.
[2] Copéret C .[J].CHEMICAL REVIEWS,2010,110:656.
[3] Enger B C;L?deng R;Holmen A .[J].Applied Catalysis A:General,2008,346:1.
[4] Wang X;Zhuang J;Peng Q;Li Y D .[J].NATURE,2005,437:121.
[5] Somorjai G A;Tao F;Park J Y .[J].Topics in Catalysis,2008,47:1.
[6] Tian N;Zhou ZY;Sun SG;Ding Y;Wang ZL .Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J].Science,2007(5825):732-735.
[7] Van Santen R A .[J].Accounts of Chemical Research,2009,42:57.
[8] Xie X W;Li Y;Liu Z Q;Haruta M Shen W J .[J].NATURE,2009,458:746.
[9] Liu, XW;Zhou, KB;Wang, L;Wang, BY;Li, YD .Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods[J].Journal of the American Chemical Society,2009(9):3140-3141.
[10] Wang, Y.-G.;Yoon, Y.;Glezakou, V.-A.;Li, J.;Rousseau, R. .The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO_2 from ab initio molecular dynamics[J].Journal of the American Chemical Society,2013(29):10673-10683.
[11] Wang Y G;Mei D H;Li J;Rousseau R .[J].J Phys Chem C,2013,117:23082.
[12] Liotta L F;Carlo G D;Pantaleo G;Deganello G .[J].CATALYSIS COMMUNICATIONS,2005,6:329.
[13] Liotta L F;Carlo G D;Pantaleo G;Veneziaa A M Deganello G Merlone Borla E Pidriac M F .[J].Topics in Catalysis,2007,42-43:425.
[14] Liotta LF;Di Carlo G;Pantaleo G;Deganello G .Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2007(26):314-322.
[15] Hu L H;Peng Q;Li Y D .[J].Journal of the American Chemical Society,2008,130:16136.
[16] Hu L H;Sun K Q;Peng Q;Xu B Q Li Y D .[J].Nano Res,2010,3:363.
[17] Beaufils J P;Barbaux Y .[J].JOURNAL OF APPLIED CRYSTALLOGRAPHY,1982,15:301.
[18] Ziólkowski J;Barbaux Y .[J].Journal of Molecular Catalysis,1991,67:199.
[19] Jansson J .[J].Journal of Catalysis,2000,194:55.
[20] Broqvist P;Panas I;Persson H .[J].Journal of Catalysis,2002,210:198.
[21] Grillo F;Natil M M;Glisenti A .[J].Applied Catalysis B:Environmental,2004,48:267.
[22] Petitto SC;Marsh EM;Carson GA;Langell MA .Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water[J].Journal of molecular catalysis, A. Chemical,2008(1/2):49-58.
[23] Delley B .[J].Journal of Chemical Physics,1990,92:508.
[24] Delley B .[J].Journal of Physical Chemistry,1996,100:6107.
[25] Delley B .[J].Journal of Chemical Physics,2000,113:7756.
[26] Perdew J P;Burke K;Ernzerhof M .[J].Physical Review Letters,1996,77:3865.
[27] Govind N;Petersen M;Fitzgerald G;King-Smith D Andzelm J .[J].Computation materials science,2003,28:250.
[28] Xu X L;Chen Z H;Li Y;Chen W K Li J Q .[J].Surface Science,2009,603:653.
[29] Zasada F;Stelmachowski P;Maniak G;Paul J F Kotarba A Sojka Z .[J].Catalysis Letters,2009,127:126.
[30] Walsh A;Wei S H;Yan Y;Al-Jassim M M Turner J A Woodhouse M Parkinson B A .[J].Physical Review B:Condensed Matter,2007,76:165119.
[31] Jiang D;Dai S .[J].Physical Chemistry Chemical Physics,2011,13:978.
[32] Dutta P;Seehra M S;Thota S;Kumar J .[J].Journal of Physics:Condensed Matter,2008,20:015218.
[33] Roth W L .[J].Journal of Physics and Chemistry of Solids,1964,25:1.
[34] Patil PS.;Lokhande CD.;Kadam LD. .PREPARATION AND CHARACTERIZATION OF SPRAY PYROLYSED COBALT OXIDE THIN FILMS[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,1996(1):29-32.
[35] Cheng CS.;Sakata H.;Hirayama T.;Serizawa M. .Electrical conductivity of Co3O4 films prepared by chemical vapour deposition[J].Materials Chemistry and Physics,1998(3):225-230.
[36] Barreca D;Massignan C;Daolio S;Fabrizio M Piccirillo C Armelao L Tondello E .[J].CHEMISTRY OF MATERIALS,2001,13:588.
[37] Gulino A;Fragala I .Cobalt hexafluoroacetylacetonate polyether adducts for thin films of cobalt oxides[J].Inorganica Chimica Acta,2005(15):4466-4472.
[38] Psofogiannakis G;St-Amant A;Ternan M .[J].Journal of Physical Chemistry B,2006,110:24593.
[39] Wang C C;Wu J Y;Jiang J C.[J].J Phys Chem C,2013:117,6136.
[40] Molinari M;Parker S C;Sayle D C;Islam M S .[J].J Phys Chem C,2012,116:7073.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%